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The flow of an incompressible fluid in a turbulent boundary layer on a plate with distributed transpiration is considered. Closure 
conditions are obtained in the form of universal dependences of the shear stress and other components of the Reynolds tensor 
on the gradient of the mean streamwise velocity, which can only be found on the basis of data that are known for a flow over an 
impermeable plate. As a result of the asymptotic solution of the problem for high Reynolds numbers, similarity laws for the 
velocity profiles and turbulent stresses are established, which enable one to calculate these quantities using data which are known 
for an impermeable plate. �9 2005 Elsevier Ltd. All rights reserved. 

The well-known analysis of the flow in a turbulent boundary layer on an impermeable plate, which was 
carried out for the first time in [1-3] using dimensional analysis (see also [4]), is obviously very restricted 
with respect to the number of governing parameters of the problem and does not yield any interesting 
conclusions when there is a non-zero transverse velocity on the wall. In this case, however, a universal 
functional relation can be established between the turbulent shear stress and the gradient of the mean 
velocity [5, 6], and the use of this relation, together with the equations of motion, enables one to solve 
the problem. 

The similarity rules for the velocity and temperature in the near-wall region of a boundary layer, which 
extend the logarithmic law to the case of a transpired wall were obtained in this way [5] and the para- 
meters in the asymptotic case of boundary layer with suction were calculated in [6]. 

The further development of this method [5, 6] in the present paper has enabled us to solve analytically 
the problem for a boundary layer on a plate with moderate injection or suction, and to obtain universal 
representations of the velocity profile and components of the Reynolds tensor which hold everywhere 
outside the viscous sublayer. 

Some of the results presented here were obtained earlier in [7] using a less general formulation. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the incompressible turbulent boundary layer flow over a smooth flat plate with a constant 
free-stream velocity Ue at the outer edge of the boundary layer and with a constant transpiration velocity 
~w directed along the normal to the plate surface. We will assume that turbulent flow develops immedi- 
ately from the leading edge of the plate. We will also assume that the level of turbulent fluctuations in 
the free stream is negligibly small and has no effect on the flow in the boundary layer. 

The gradient of the mean longitudinal velocity and the turbulent shear stress are functions of the 
Cartesian x and y coordinates and of the governing parameters of the problem: 

~u/~y = F](x, y, v, ~.,, U.), (u'v') = F2(x, y, v, ~,~, U.) (1.1) 
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Here v is the kinematic viscosity, and the origin of the Cartesian system of coordinates is on the leading 
edge of the plate. 

By virtue of the elliptical nature of the problem, the quantities occurring on the left-hand sides of 
equalities (1.1) can also depend on additional conditions, which are formulated below with respect to 
flow, for example, where separation of the boundary layer occurs in the case of injection. Only an attached 
boundary layer will subsequently be considered and the effect of the additional parameters on this is 
negligibly small. 

We now introduce the boundary-layer thickness 

A = F3(x, v, 1) w, Ue) (1.2) 

into the treatment as a certain quantity which characterizes the transverse scale of the flow. 
Now, expressingx and Ue from the first equation of (1.1) and Eq. (1.2) and substituting into the second 

equation of (1.1), we obtain 

0u  uo>-  4(yv 
Applying dimensional consideration to this relation, we shall have 

(u'V') = - (y~y)  S(R1,13,13); R, = v'~y 13 = yRl~,OyJ 1] = (1.3) 

The local Reynolds number R l is equal to the ratio of the characteristic values of the turbulent and 
molecular viscosities. Like the functions F1 . . . .  , F4, the function S is universal for the class of flows 
being considered, which depend on the three parameters v, ,o,,, Ue. We will assume that it is continuous 
when 0 _< Rt < oo, --oo < 13 <-- oo, 0 < rl < oo, differentiable within this domain, and that it satisfies the 
condition S(oo, 0, 0) r 0. As was shown in [5], the last inequality is the condition for the existence of a 
logarithmic velocity profile in a boundary layer on an impermeable plate. 

Relation (1.3) is an expression of the shear stress in terms of the mean velocity gradient. Since the 
effect of the transpiration rate must decrease on moving away from the wall, the parameter ~ was chosen 
such that the local Reynolds number R l is in the denominator. 

Similarly, for the normal turbulent stresses, we obtain 

,2 3U 2 t)U 2 b/g 2 
(u )=(y-~y) Sl(Rl, 13, rl,, (v'z) = (y-~.-y) S2(RI, 13, TI,, (w'Z)=(y-~y) S3(Rl, 13,11) (1.4) 

Here, $1, S2 and $3 are certain universal functions. However, a continuity condition can only be formu- 
lated for the function $2, which describes the behaviour of the Reynolds-tensor component associated 
with transverse velocity fluctuations. According to the theoretical representations in [8, 9], which are 
supported by measurements, this component behaves, close to the wall, in a similar manner to the shear 
stress. The quantity 

$2(oo , O, O) -- (1(/02) 2 (1.5) 

therefore exists and is not equal to zero. Here, ~: = 0.41 is yon K(~rmfin's constant and, according to 
experimental data, the constant (Y2 = 0.95 [4]. 

,2 The behaviour of the components ( u )  and (w'2), which are associated with velocity fluctuations in 
directions parallel to the wall, has a more complex form, according to which 

Sl(o*,0, rl ) = -AlK21nq+O(1),  S3(~,,0, rl) = -A3g:21nrl+O(1), 1]---)0 (1.6) 

where A 1 and A 3 are universal constants. According to experimental and theoretical data [10, 11], 
A1 = 1.1 andA3 = 0.36. 

The conditions for the functions S, $1, $2, $3 are formulated using the following physical assumptions 
[8, 9]: the viscosity is only essential in a thin region close to the wall (a viscous sublayer) and the outer 
scale (the thickness of the boundary layer) has no effect on the behaviour of the components (u'aY) and 
(aY 2) close to the wall but, by virtue of the considerable anisotropy of the near-wall vortices, it still has 
an effect on the components (u '2) and (w'Z). 
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In the case being considered, the stream function of the averaged flow ~(x, y) satisfies the boundary- 
layer equation with zero pressure gradient 

= U' I)' l~ly~lxy -- ~tlxltllyy (V~lyy -- ( ) )y 
(1.7) 

x>O, y = O:~y = O, Wx = -~ y--#.o: Wy.-)Ue, (u'o')--#O 

In problem (1.7) we now change to new variables using the formulae [12] 

dR a y U~x, U,A 
= UeAtlJ(~,l'l), A(~) = ~.~--~, ~ = lnRA, rl = , R,, = v R~ - v (1.8) 

The logarithm of the Reynolds number based by the boundary-layer thickness and the normalized 
distance to the wall are chosen as the independent variables ~ and rl. In addition to the dimensionless 
stream function q'(~, rl), a second unknown function A(~) is introduced, which has the physical meaning 
of the rate of longitudinal change in the transverse scale A. Taking relation (1.3) into account, we obtain 
for the functions ~P(~, rl) and A(~) 

A[~IJ ~II~n _ ~lJ11~(~IJ + t p ~ ) ]  = [(.qWnn)2S(Rt, ~, TI ) + e4~nnln (1.9) 

R I = e~ll2gttqn , ~ = B(T1RtWnn) -i, B = U.--~e 

>-**, 11 = 0: W n = 0, A(W+W~) = - B  (1.10) 

rl---~,,*: ~ - - -~1 ,  rlWnn,~IS(Rt,~I,11)--..~O (1.11) 

Relations (1.10) specify the conditions on the plate, and relations (1.1) specify the conditions on the 
outer edge of the boundary layer. In accordance with the order of the differential equation, two 
conditions are set for the velocity and shear stress on the outer edge. 

We shall seek an asymptotic representation of the solution of problem (1.9)-(1.11) when ~ ~ o~. We 
introduce the small parameter e and the new independent variable ~ = e~, 1/4 = O(1). The small 
parameter in the present problem is therefore a quantity which is the reciprocal of the logarithm of 
the Reynolds number, based on the characteristic transverse scale of the flow. 

We specify the transpiration rate on the wall in the form 

B = E2b, b = O(1) (1.12) 

that is, we shall assume the order of smallness of the magnitude of the transverse velocity on the wall 
to be quadratic in the parameter e. 

The asymptotic expansions of the solution with respect to the small parameter e will have a different 
form for the different characteristic regions of the flow. Two such regions arise in a direction perpen- 
dicular to the wall: an outer region, where the molecular viscosity can be neglected in the boundary 
layer equation and the characteristic scale is the boundary-layer thickness, and a near-wall region, the 
characteristic scale of which is determined from the condition that the turbulent and viscous stresses 
are equal in order of magnitude. 

2. THE NEAR-WALL REGION OF THE BOUNDARY LAYER 

We introduce the following variables (wall variables) 

YUe9 YY o+ = "~9 '  t# = (2.1) 
y+ = ~ ,  U+ = Ue~o' 

We introduce the following variables (wall variables) where cf is the skin-friction coefficient. We integrate 
Eq. (1.9) across the layer and change to the independent variables ~ and y+. For the function u + (~, y§ 
we obtain the equation 
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y+~y+) S~gl, ~y+- m- O+u+ = 

_~/" Y+ Y+ Y+ 
Ae |dtpr  2 .  ~ 2 J. OU+ ) 

= ~P t d ' ~ { u + a y + + ~ u + d y + - u ' !  (2.2) 

R t = Y+~y+, ~J = y+Rt~,~y+) 

Taking the limit when e ~ 0, 1/~ = O(1), y+ = O(1) we obtain the first-order ordinary differential 
equation 

OU+'~ 2 + dU+ 
y+-~y+) S(R,, [i, O) dy+ = 1 + t}+U+, 

2dU+ 1)+ (~U+~-' 
R l = Y+'~y+, ~ = ~+Rl~,-~y+/ 

u+(o)  = o 

(2.3) 

for the first term in the expansion U+(y+) of the function u+(~, y+). 
The asymptotic form of the solution of Eq. (2.3) in the outer part of the near-wall region, that is 

outside the viscous sublayer, has the form [5] 

~--~.(,~1 + v + U + - l )  = l [ lny++C(o+)]+O(y~) ,  y+--->~, a > 0  (2.4) 

The quantity ~/S(oo, 0, 0) plays the role of the von Kfirmfin constant and C(v+) is a certain function. 
At the same time, C(a)+) = Co + O(a)+) when "o+ ~ 0, where Co is the second constant in the logarithmic 
law for the velocity profile in the case of an impermeable wall [5]. According to experimental data, 
Co = 2.05. 

The qualitative behaviour of the solution of the problem depends on the relation between the shear 
stress on the wall and in the outer region of the boundary layer. Three characteristic flow behaviours 
can be distinguished: moderate transpiration when the shear stress is of the same order of magnitude 
in the outer and near-wall regions, strong near-critical injection when the shear stress on the wall is 
much less than in the outer region and strong suction when the friction on the wall is, on the other 
hand, much greater than in the outer region of the boundary layer. The first type of flow behaviour is 
considered below. In this case, all the empirical constants and functions occurring in the solution can 
be determined from experimental data for an impermeable plate. Strong injection [13] and strong suction 
[14, 15] have already been investigated. 

3. THE O U T E R  R E G I O N  OF THE B O U N D A R Y  LAYER 

The function A(~), which specifies the rate of streamwise change in the boundary-layer thickness, is a 
small quantity. Hence, in the first approximation, the left-hand side of Eq. (1.9) can be equated to zero, 
whence it follows, when account is taken of the conditions on the outer edge, that the streamwise velocity 
is a constant across the layer. The perturbation of this constant quantity in the next approximation is 
of the order of A(~). 

We shall therefore seek a solution of problem (1.9), (1.10) in the outer region of the boundary layer, 
where l/r1 = O(1), in the form 

A(~) = e~,l(~) + e21ne~,2(~) + O(E 2) (3.1) 

W(~, •) = Ww(~) + 1] + A(~) f (~ ,  1"1) + O(e 2) (3.2) 

We put f(~, 0) = 0; then Ww(~) is the value of the stream function on the wall. By virtue of relations 
(1.12) and (3.1), it follows from the second condition on the wall (1.10) that 
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~Pw(~) ~ d~ = O(E) (3.3) 

Substituting expansions (3.1) and (3.2) into Eq. (1.9), taking account of relation (3.3), and taking the 
limit when e ---) 0, 1/~ = O(1), 1/rl = O(1) we obtain the boundary-value problem (the notation 
TOO = ~/S(oo, 0, rl) has further been introduced) 

[(rlfnnT)2]n + ~fnn = O; f (~,  O) = fn(~, **) = O, lira rlfnnT--4 0 (3.4) 

for determining the functionf(~, rl), which enables us to conclude that the functionf(~, rl) can be chosen 
independently of  the variable ~. Moreover, for a specified order of  magnitude of  the transverse velocity 
on the wall, the solution of boundary-value problem (3.4) is of a universal nature, since it is independent 
of the conditions on the surface over which the flow occurs. In other words, the function f(rl) is exactly 
the same function for the cases of  a transpired or an impermeable plate. 

Integration of Eq. (3.4) gives 

q 

where D is a constant. When account is taken of the condition for the shear stress, we shall have from 
this that 

q 

and the improper integral on the right-hand side converges. Hence, the solution of the boundary-value 
problem (3.4) has the form 

f '  (1"1) = - J  21], T(r I l ) J T'~2) (3.5 / 

Since T(0) = n, from (3.5) we obtain the asymptotic form of the solution on the wall 

f ' ( r l )  = - ~ ( l n r l + A o - l n F , ) + O ( r l a ) ,  rl--.~O, F , = ~  = i2~'  a > O  
0 

(3.6) 

whereA 0 is a certain constant. 
Note that transformation (1.8) allows of a certain arbitrariness in the choice of the boundary-layer 

thickness so that this quantity can be not identical to the transverse scale occurring in the formulation 
of closure condition (1.3). We introduce the new transverse scale A o = A/o, where C(~o, e) is an arbitrary 
function provided that the condition for a monotonic increase in the boundary-layer thickness is satisfied. 
We label all quantities, which are defined in the case of a boundary-layer thickness Ao, with the subscript 
o. The equalities 

11o = orl, fo(rio) = o2f(r l )  (3.7) 

follow from (3.5). According to these equalities the constant A0 in the asymptotic representation (3.6) 
is independent of the method of defining the boundary-layer thickness. 

4. M A T C H I N G  OF T H E  S O L U T I O N S  F O R  T H E  O U T E R  AND N E A R -  
WALL R E G I O N S  OF T H E  B O U N D A R Y  L A Y E R  

The solutions of the problems for the outer and near-wall regions contain two unknown functions: A(~) 
and q~(~), which can be found as the result of asymptotic matching [16]. In accordance with representations 
(3.1), (3.2) and (1.3), the estimate 
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( u ' v ' ) / v ~  - A~(~) = O(~ 2) 

holds for the turbulent shear stress in the outer region of the boundary layer. Considering the case of 
moderate transpiration when the shear stress is of the same order of magnitude on the wall and in the 
outer region, we will seek the skin-friction coefficient in the form 

~(~) = Etl(~) + E21nEt2(~) + 1~2t3(~) + s + E3lngts(~) + O(E 3) (4.1) 

For matching, we will base ourselves on relation (2.4), which holds in the near-wall region outside 
the viscous sublayer and the asymptotic representation for the streamwise velocity 

W~ = 1 + -~[e~, t (~)  + eZlns~,2(~)][lnrl + A 0 - lnF 1 + O(rla)] + 0 ( 8  2) (4.2) 

which is obtained from the solution for the outer region of the boundary layer when rl ~ 0 on the basis 
of representations (3.1) and (3.2) and asymptotic form (3.6). These two relations hold in the intermediate 
zone joining the two characteristic domains. 

According to equalities (2.1), the relation between the wall variables y+, U+ and the outer variables 
q, Vq has the form 

�9 q eZb )- O(ee-;/t), v+ = (4.3) y+ -- q,(~)e;/~n, u+ - ~(~) ~(~) 

An estimate of the order of the residual term in the second formula of (4.3) follows from the estimation 
of the right-hand side of Eq. (2.2) when account is taken of expansions (3.1) and (4.1). 

In (2.4), we now change from the wall variables to the outer variables using formulae (4.3) and, when 
1/~ = O(1), 1/'q = O(1), we expand both sides of the equality with respect to the small parameter e up 
to terms of the order of 81ne inclusive. We express the streamwise velocity using representation (4.2). 
Instead of the skin-friction coefficient, we substitute series (4.1) and, at the same time, assume that 

t1(~)~O, t~(~)+br (4.4) 

Since a>+ = O(e) in this case, it is sufficient to use the estimate C('o+) = Co + O(e) of the function 
C(a~+) occurring in asymptotic form (2.4). We equate similar terms on the right-hand and left-hand sides 
of the equality obtained in this manner. As a result, we will have seven algebraic equations for the seven 
required functions ~.1(~), ~.2(~), ta(~) . . . .  , ts(~), the solution of which is 

*:P(~) Z.2(~) : ~2 '  t l ( O  = 
~q(~) = Fl ~ �9 E I 

~: ~: [_p2(~) 2R(~)] (4,5) _ KP(;)R(;) = -- ts(;)  = ~'~LQ~'~ + t 3 ( ~ ) - -  ~2 ' t4(~) ~3' 

( ~ ) 2  ( ~ ) 2  lnrF1Q(~) _ Ao + C ~ P(~) = l + b  ~ , Q(~) = 1 - b  , R(~) = 

According to solution (4.5), the second inequality of (4.4) is equivalent to the inequality ~,1(~) ~ 0 
and inequalities (4.4) express the conditions that the leading terms of the expansion of the skin friction 
do not vanish during injection and that the function A(~) does not vanish during suction. 

We determine the connection between the variable ~ and the streamwise coordinates x from relations 
(1.8) and (3.1) 

e ~ / ~ (  1 X2(~) (4.6) 

When account is taken of the expressions for the coefficients of series (4.5), expansions (3.1), (3.2), 
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(4.1) and (4.6) give the required asymptotic representation of the solution for large values of lnRA which, 
however, has the serious drawback that, in the case of real Reynolds numbers, which determine the 
magnitude of the small parameter e, the terms of asymptotic expansions (3.1), (4.1) and (4.6) do not 
decrease sufficiently rapidly. 

We will make use of the freedom noted above in our choice of the boundary-layer thickness in order 
to transform the series to a more convenient form. To do this, we write expansions (3.1) and (4.1) in 
the following equivalent form 

r l~  F i t  

9 [ P2(~)-]2 + O(g3) ~o(~) -- et:Q(~)~ _ e 2 (~)[lne + R(~)] + lne + R(~) + 2Q(~)J 

(4.7) 

Expansions (4.7) are identical to expansions (3.1) and (4.1), in which the values of coefficients (4.5) 
are set up, to written quantities of the order of e 2 and e 3, respectively. 

We now introduce the new transverse scale Ao = A/o(~o, e). The independent variables and the 
required functions corresponding to the two different scales are related to one another by the equalities 

4 =  ~o+Elna, ~0(~) = q)o(~o), A(~)= Ao(~o)(O+~ff--~o) (4.8) 

The last equality was obtained in accordance with the definition of the function A(~) (1.8). 
Taking account of the fact that the value of the quantity Fl, which is defined by equality (3.6), changes 

according to formula (3.7) on changing to the new scale, we write expansion (4.7) for the new variable 
and put lno = -Ins -R(~o). Only the leading terms then remain in the new expansions and, according 
to equalities (4.8), we shall have 

= ~o-e[lnl~+ R(~o)] (4.9) 

eKe(to), rK [ (e2/] 
(4.10) 

Hence, an almost identical change of variables (4.9) reduces asymptotic expansions (4.7) to the simple 
single-term form (4.10). This can also be shown by direct substitution. 

When account is taken of relations (4.9) and (4.10), integral (4.6) is transformed in the following 
manner 

de~ t2~ exp [-~2 + A 0 - Co+ O(~o) 1 (4.11) Rx = .[ =  2 :2e(go)Q(;o) 

An asymptotic solution of the problem is obtained in the boundary-layer approximation when the 
stream function satisfies Eq. (1.7). However, all of the results still hold if the system of complete 
Reynolds-averaged Navier-Stokes equations is used as the initial system when constructing 
expansions (3.1), (3.2) and (4.1). The terms in the Navier-Stokes equations which are not taken into 
account in boundary-layer theory only affect quantities of the order of e 2 in expansions (3.1) and (3.2). 
The solution which has been constructed is therefore an asymptotic solution of the Reynolds-averaged 
Navier-Stokes equations which, when e ---> 0% has the same accuracy as the boundary-layer equations. 

5. THE UNIVERSAL V E L O C IT Y -D E FE C T  LAW 

Solving the second equation of (4.10) for e/to, we obtain 

21r = (A ,+q~) [ l+O(e , ) ] ,  A,  = ~/cf /2+B, e ,  = , , /cf+B (5.1) 

Here, account has been taken of the fact that, by virtue of the inequality e, < A, + ~p < ~[2 e,, we can 
write O(e,) instead of O(A, + ~0). 
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Substitution of expression (5.1) into the first relation of (4.10) gives 

A = A~-~-*[1 +O(e , ) ]  
r l  

(5.2) 

A similar expression has been obtained [17] (see also [4]) on the basis of dimensional considerations 
for the case of an impermeable plate. 

We obtain the final form of the formulae for the streamwise velocity distribution in the outer region 
of the boundary layer and, also, of the Reynolds numbers, based on the boundary-layer thickness and 
distance from the leading edge of the plate, from relations (3.2), (4.9) and (4.11) taking relations (5.1) 
and (5.2) into account. 

U e - u  _ f ' ( ~ )  + Of~ , )  (5.3) 
U , A ,  F 1 

RA = -~tg' Rx = ~ A , '  E = exp ( A , - ( p ) + A  0 - C  0 + O ( e , )  (5.4) 

Equality (5.3), obtained earlier in [7], is a universal velocity-defect law which extends the well-known 
relation for an impermeable plate to the case of transpiration. 

The universal function f'(rl) can be defined using Coles' empirical formula for the velocity profile 
on an impermeable plate [18] 

f'(Tl) i 
~[Inr1-0.55(I + cos(~rl))], 0<rl _< I 

Fl K 
(5.5) 

Here, the quantity A is chosen as the distance from the wall at which the streamwise component of the 
mean velocity differs from Ue by 0.5%. In this case, F] = 1.55/n, A0 = 0.23. 

Integrating both sides of the equality (5.3) with respect to rl from 0 to ~ ,  we will have 

~*/A, = FtA[1 + O(e,)]  (5.6) 

where 8" is the displacement thickness of the boundary layer. For represent the results, it is convenient 
to use a transverse scale, defined by the equality 

A* = 8*/A, (5.7) 

Expression (5.7) is an extension of the boundary-layer thickness introduced by Clauser [19] to the case 
of a permeable plate. According to Clauser's data, A0 = 0.246 which is extremely close to the value 
cited above which was calculated using Coles' formula (5.5). 

In order to check the theoretical results, experiments [20-25] were chosen which had been carried 
out under conditions which correspond to a sufficient degree to the formulation of the theoretical 
problem. In particular, the level of turbulent fluctuations on the outer edge of the boundary layer in 
the experiments in [20-25] can be assumed to be small. 

The notation 

Ue - u 2(U, - u) 
D = - -  D 1 = 

U~A,' U~(A, + ,4/c//2 + B u / U  e) 

e = vOu lOy-  (u ' l / )  (U'2) P2 (I) '2)  
2' 2 , P1 = IT2A 2 ' = 2 2 

UeA , v , , , ,  UeA , 

is used in all the figures. 
The experimental velocity profiles in the boundary layer on a plate with injection for different values 

of the parameter B and Reynolds numbers [20] are constructed in similarity variables (5.3) on the left- 
hand side of Fig. 1. The solid curves correspond to Coles' formula (5.5). The experimental data confirm 
the correctness of the velocity-defect law: in the outer region all the points lie on a single curve, which 
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Fig. 1 

corresponds to the velocity profile on an impermeable plate (the left-hand side of Fig. 1). At the same 
time, the interval, in which the proposed similarity relation is satisfied, depends very much on the 
injection parameter. For an impermeable plate (B = 0), the universal curve describes the velocity 
distribution through the whole thickness of the boundary layer apart from the viscous sublayer which 
is very close to the wall. As the rate of injection increases, the region of applicability of similarity law 
(5.3) contracts and, in the case of the value B = 0.008, which was the largest value of B in the series of 
experiments in [20], it is approximately 80% of the boundary-layer thickness. 

Similarity law (5.3) must be satisfied at high Reynolds numbers. In the case of the data of Fig. 1, the 
minimum Reynolds number is 3.5 x 105. Velocity profiles, measured in [20] at lower Reynolds numbers 
(Rx = 3.2 x 104, 1.6 x 105), are available: these data do not satisfy the velocity-defect law which has 
been established. 

Velocity-defect law (5.3) enables one to formulate similarity rules for the distribution of the 
components of the Reynolds stress tensor. From relation (1.3) and Eq. (3.5) for the shear stress, we 
obtain 

v ~ u l ~ y -  (u'f f)  = 1 + r l f ' ( r l ) -  f ( r l )  + O(F,,) 
2 2 f(**) UeA,  

(5.8) 
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From relations (1.4), for the normal turbulent stresses in the outer region we shall have 

(u") 0, n) + o (e . )  = 
UeA, 

(5.9) 

The relations for the components 0 ;  2) and (w '2) are completely analogous to formula (5.9). There is 
a function on the right-hand side of equality (5.9) which specifies the distribution of the component of 
the Reynolds tensor in the boundary layer on an impermeable plate. 

On the fight-hand side of Fig. 1, the data from the measurements of the shear stress in [20], constructed 
in similarity variables (5.8), are compared with the calculated curve corresponding to the right-hand 
side of formula (5.8) in which the functionf'(rl) is given by expression (5.5). In the case of an impermeable 
plate, the calculated curve and the experimental shear stress profiles are extremely close (B = 0, the 
right-hand side of Fig.l). This confirms the correctness of the approximate equation (3.5) obtained in 
this paper, since Coles' formula describes the experimental velocity profile quite well (B = 0, the left- 
hand side of Fig. 1). In the case of injection, use of variables (5.8) enables one to superpose the shear 
stress distributions obtained for a single value of the injection parameter but for different Reynolds 
numbers. (It is obvious that the anomalous behaviour of the three profiles corresponding to B = 0.001 
and 3.5 x 105 ___ R x < 7.3 • 105, and of the single profile corresponding to B = 0.00375 and R x = 1.3 x 
106 is due to the inaccuracy of the measurements). However, the experimental data only agree with 
the calculated curve in part of the boundary layer in the region which is adjacent to its outer edge; the 
length of this domain contracts appreciably as the injection rate increases. 

In Fig. 2, the experimental profiles of the components of the Reynolds tensor associated with the 
streamwise velocity fluctuations (the left-hand side of Fig. 2) and the transverse velocity fluctuation 
(the right-hand side) [21] (also, see [22]) have been constructed for different values of B and Rx in 
similarity variables (5.9). It can be seen that the experimental data obtained over an extremely wide 
range of the injection parameter at different Reynolds numbers satisfy similarity rule (5.9) in region 
consisting of approximately three quarters of the boundary-layer thickness. 

Velocity-defect law (5.3) can be written in the form 

Ue--U 
f ' ( T I ) + e f l ( { , 1 1 ,  e) ,  fl(~,TI, 8 ) = O ( 1 ) ,  e--->0 

U e A ,  F1 

From this, for the integral boundary layer characteristics we obtain 

8* 0 
- 1 + eI(r~, e), ~ = 1 - GA, + el(~, 8) + 0(8 2) (5.10) 

FIAA, FIAA, 

= 'Tf'2drl 
G =  

'o' l 'o#, 
(5.11) 
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Here 0 is the momentum thickness. According to equalities (3.7), the second integral of (5.11) is 
independent of the method of defining the boundary-layer thickness. The quantity G is known as the 
Clauser shape factor [19], and, according to the data from measurements in a boundary layer on an 
impermeable plate, its numerical value lies in the range from 6.4 to 7.1; calculations based on Coles' 
formula (5.5) give G = 6.61. 

The similarity rule for the boundary-layer shape factor follows from relations (5.10) 

(1-O/8*) /A,  = G+O(E, )  (5.12) 

which extends the well-known representation for an impermeable plate [19] to the case of transpiration. 
The values of the shape factor for a boundary layer on a plate with injection, which have been 

transformed in accordance with formula (5.12), are constructed in Fig. 3 using the experimental data 
from [20, 23, 24]. As a whole, the data from the measurements correspond to similarity rule (5.12), 
although the value of the constant, around which the experimental points are mainly concentrated, is 
20% less than the value which is characteristic of a boundary layer without injection. 

6. COMPOSITE EXPANSIONS FOR VELOCITY AND REYNOLDS 
STRESS PROFILE 

Velocity-defect law (5.3) is correct in the outer region but it is not satisfied in the near-wall region where 
the velocity distribution is described by the function U+(y+). Outside the viscous sublayer, this function 
satisfies similarity law (2.4). A composite expansion, constructed using relations (2.4) and (5.3), enables 
one to obtain a representation of the velocity profile in the whole of the boundary layer apart from the 
viscous sublayer. 

We will rewrite similarity law (2.4) in the outer variables taking account of the expression for the 
boundary-layer thickness (5.4). 

q 1 B (6.1) ~/1-qD = 1+ ~+O(q2), ~(TI) = ( l n q + A ~  q = A"-~ 

On the basis of relations (1.12) and (4.1), q = O(e) in the case being considered of moderate 
transpiration. Solving Eq. (6.1) assuming that q~' = O(1), we obtain 

O = - 0 - q o  2 § O(q) (6.2) 

Equalities (6.2) and (5.3) are now considered everywhere outside the viscous sublayer. We form the 
composite expansion for the velocity defect D in the form of a sum of expansions for the two regions, 
after subtracting their common part [16] 

f, ~ 2  + O(e.)  (6.3) D -  FI 
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We now replace ~(T1) by the function f'(TI)/F 1 which, according to (3.6), has the same asymptotic 
form on the wall. This does not change the order of accuracy of representation (6.3), but allows the 
physical condition that the velocity defect should vanish on the outer edge of the boundary layer to be 
satisfied. Hence, finally we will have 

U e -  g _ f ' ( r l )  - qf'2(rl) + O(e , )  (6.4) 
UeA , F! 4F~l 

Here, the estimate O(e,) uniformly holds everywhere outside the viscous sublayer. 
Substituting expressions (6.4) into relations (1.3) and (1.4) we obtain the composite expansions for 

the Reynolds stresses, which represent these quantities solely in terms of functions which are known 
in the case of flow over an impermeable plate, 

~If'(n)- f(n)lU2Fl ~/v3ulay- (u'ff) = [1 + + + O(1~,) 
OeA , ~ I L ~--~lJ (6.5) 

('~v'2) - nf"(n)[-1 q f ' ( n ) l / s  (oo, 0, n) 
UeA, F 1 L + ~ _ ] 4  I +O(e , )  (6.6) 

The formulae for the components (u '2) and (W '2) are completely analogous to the notation of (6.6). 
Expressions (6.5) and (6.6) describe the profiles of the shear stress and of the root-mean-square trans- 
verse velocity fluctuation everywhere outside the viscous sublayer. The region of applicability of the 
similarity laws for streamwise and spanwise fluctuations is narrower and, close to the wall, is restricted 
to the region where asymptotic representations (1.6) hold. 

Using formulae (1.5) and (1.6), and asymptotic representation (3.6), we obtain the following expansions 
close to the wall for the components of the Reynolds stresses 

/ 2,,1/3 
JvOaU U~ ~ y -  (u'o') = ~-~lnrl+O(1), ((u'2)) 1/3 ~ 

= ]owl [ 4 ~ 2 )  InTI+O(1) 
(6.7) 

" 2 - I / 3  

_ 1)w 2Kt~21n'q + 0 ( 1 ) ,  ((W'2)) 1/3 1)w(A30w I = iowl L 4~ 2 ) lnrl + O(I),  r I ---> 0 

All the constants in expansions (6.7) are known from experimental data in the case of an impermeable 
plate. It can be seen that there is a region close to the wall in which the root of the shear stress and 
the root-mean-square transverse velocity fluctuation behave as the logarithm of the distance to the wall 
and the root-mean-square streamwise and spanwise fluctuations behave as the logarithm to the power 
of 3.2. 

Another form of the composite expansion for the velocity profile is obtained on solving Eq. (6.4) for 
f'(rl) 

2(Ue-u) - f ' (q )  + O(•,) (6.8) 
Ue(A , + ,,/c~/2 + Bu/Ue) F1 

Integration of equality (6.4) from the wall to the outer edge of the boundary layer gives a relation 
which is analogous to (5.6) 

5"  
A** - = FIA[1 + O(e,)]  

A,  - GB/4 

where G is the Clauser shape factor (5.11). The transverse scale A**, which is improved compared to 
(5.7), therefore corresponds to similarity law (6.8). 

Relation (6.8) was proposed for the first time in [26] as a semiempirical dependence. 
According to their construction, asymptotic representations (6.8) and (6.5) for the velocity and shear 

stress profiles hold everywhere outside the viscous sublayer. This is confirmed by Fig. 4, in which the 
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same experimental data for the velocity distribution (the left-hand side of Fig. 4) and shear stress (the 
right-hand side) are constructed in variables (6.8) and (6.5). The velocity profiles [25], obtained not 
only in the case of injection but also suction, are presented in Fig. 5 for different values of the parameter 
B and Reynolds numbers. 

It is now clear from the left-hand side of Fig. 4 and Fig. 5 that the experimental values of the velocity 
follow the universal curve almost along the whole boundary-layer thickness irrespective of the depen- 
dence on the magnitude of the transpiration parameter. Only points belonging to the viscous sublayer 
deviate from the universal distribution. 

Similarity, it can be seen from the right-hand side of Fig. 4 that the two-term formula (6.5) provides 
a good description of the shear stress profile outside the viscous sublayer for all values of the injection 
parameter; the calculated curves are constructed for the values of q indicated in Fig. 4. For constant 
B, the parameter q changes slightly along the length of the plat and, therefore, in each case, its value 
has been taken as the mean for the given range of Reynolds numbers. It can be seen that, in accordance 
with formula (6.5), the experimental shear stress profiles have a distinct logarithmic segment close to 
the wall. 
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