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ABSTRACT

Unglazed transpired collectors (UTCs) have recently emerged as a new solar air
heating technology. These collectors consist of a perforated, solar-absorbing plate mounted
on i large south-facing wall. Air is drawn through the holes in the plate, into the plenum,
and finally into the building. Unlike most solar air heaters, they are not covered by a
glazing, which eliminates the reflection losses associated with glazings. Complete systems
are relatively inexpensive, efficient, and particularly suited to applications in which a high
outdoor air requirement must be met.

A TRNSYS model has been created for UTC systems. The basic energy balances of
the system are solved each time step. The UTC system model predicts the energy savings,
which i1s comprised of the active solar gain, the recaptured wall loss, and the reduced wall
loss. The model is used to perform parametric studies of UTC system operation.

Annual simulations are performed on several buildings, and the results are then
extrapelated to find the potential statewide impact of UTC systems in different economic
sectors in Wisconsin., The statewide economic potential of UTC systems is assessed for the
commercial, residential, agricultural, and industrial sectors. The economic analysis is based
on the Pj, P2 method of life cycle savings. UTC systems on existing buildings are
competitive with electric heating systems, but not with gas or oil heating. Electric heating
is not widely-used in most butldings which are well-suited for UTC systems, with the
exception of large apartment buildings. Therefore, there is no substantial statewide
economic potential for UTC systems on existing buildings except in the residential sector.
However, UTC systems should be considered for new buildings because a low first cost

allows them to compete with gas and oil heating,
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NOMENCLATURE

total collector area {m?2)

cross-sectional area of plenum in direction of air flow (m?)
collector surface area (m?) = (1-6) A

UTC system cost per unit collector area ($/m?2)

UTC system fixed cost ($)

fuel cost ($/GI)

specific heat (I/kg-C)

hole diameter (m)

hydraulic diameter (m)

friction factor

solar fraction

fuel cost savings

acceleration of gravity (m/s2)

internal building gain (W)

heat rate coefficient (W/m2-C)

collector height (m)

incident solar radiation on the collector surface (W/m?2)
life cycle savings ($)

mass flow rate (kg/s)

Nusselt number where X is the characteristic length
hole pitch (m)

ratio of life cycle fuel savings to first-year fuel savings
ratio of life cycle capital expenditures to 1nitial investment
cross-sectional perimeter of plenum in direction of air flow
(m?2)

Prandtl number

annual energy (J/yr)

heat rate (W)

Reynolds number where x is the characteristic length
temperature (C) or (K)

heat rate coefficient (W/m?2-C)

total UA for walls and roof (W/C)

approach velocity (m/s)

plenum velocity (1m/s)



(rreek

o absorptivity

B fraction of conventional system supply air that is outdoor air

AP pressure drop (Pa)

Ap density difference between ambient and plenum air (kg/m-)

£ eMmissivity

EHX heat exchanger effectiveness of collector

Msol solar efficiency

v fraction of UTC system supply air that is outdoor air

p density (kg/m?)

o porosity of the collector plate

Osh Stefan-Boltzmann constant (W/m2-K#)

C non-dimensional pressure drop across collector
Subscripts

1 air supply from UTC system

2 air supply from conventional system

abs absorbed solar

ace acceleration

amb ambient air

aux auxiliary

avg average

bal balance

bldg building loss

buoy buoyancy in the plenum

col collector plate

cond,wall conduction through the wall

conv,col-air convection from the collector to the air

conv,wall-air convection from the outside wall surface to the air

D hole diameter {(m)

film average film coefficient for air against the original wall

fric friction in the plenum

gnd radiative ground

ht collector height (m)

load total load

X maximuim

min minimum

mix mix of outlet and recirculated air



out

pot

plen
rad,col-sur
rad,wall-col

red,wall
room
save
seg
skin
sky
solair
sup
sur
trad

u
wall

Matrices and Vectors

[A]
[b]
Ix]

collector outlet air

potential conduction through the wall

plenum air

radiation from the collector to the surroundings
radiation from the outside wall surfuace to the back of the
collector

reduced wall loss

room air

saved

market segment of an economic sector

skin loss from building

radiative sky

sol-air

supply air

radiative surroundings

traditional heating system

useful energy

outside wall surface

coefficient matrix for energy balances and rate equations
constant vector for energy balances and rate equations
unknown vector



