TRNSYS MODEL CODE

A.1 TYPE71.F Code

The unglazed transpired collector subroutine is written to simulate the performance of UTC systems with TRNSYS. See Chapters 2 and 3 for a description of the UTC system theory and model. This subroutine is in the TRNSYS component library, TRNLIB, which is available from the Solar Energy Lab at the University of Wisconsin - Madison via anonymous ftp and the World Wide Web.

subroutine type71 (time, xin, out, t, dtdt, par, info, icntrl, *) Unglazed transpired collector (UTC) subroutine. Reference: Kutscher, C.F., "Heat Exchanger Effectiveness and Pressure Drop for Air Flow Through Perforated Plates With and Without Crosswind, J. Heat Transfer, vol 116, p 391, 1994. Parameters: 1. Collector area (m2) 2. Collector height (m) 3. Collector hole diameter (m) 4. Collector hole pitch, distance between centers of holes (m) 5. Collector emissivity 6. Collector absorptivity 7. Plenum depth (m) 8. Emissivity of the wall behind the collector 9. R-value of the wall behind the collector (C-m2-hr/kJ)10. Total UA-value of the building walls and roof (kJ/hr-C) 11. Room air temperature (C) 12. Ambient air temperature above which the summer bypass damper is opened (C) 13. Maximum auxiliary heat rate available (kJ/hr) 14. Night bypass = 0 if bypass not automatically opened at night = 1 if bypass automatically opened at night

```
a(1,1) = - effhx
     a(1,2) = 1.0
     a(2,1) = - emisc * sb * surfa
              * (tco1**2 + tsur**2) * (tco1 + tsur)
     a(2,3) = 1.0
     a(3,1) = sb * area * (tcol**2 + twall**2) * (tcol + twall)
             / (1.0/emisw + 1.0/emisc - 1.0)
     a(3,4) = 1.0
     a(3,5) = - sb * area * (tcol**2 + twall**2) * (tcol + twall)
             / (1.0/\text{emisw} + 1.0/\text{emisc} - 1.0)
     a(4,2) = hvwall * area
     a(4,5) = - hvwall * area
     a(4.6) = 1.0
     a(5,2) = -gamma * mflow1 * aircp
     a(5,7) = 1.0
     a(6,3) = 1.0
     a(6,4) = -1.0
     a(6,7) = 1.0
     a(7,4) = -1.0
     a(7,6) = -1.0
     a(7,8) = 1.0
     a(8,5) = udwall * area
     a(8,8) = 1.0
     b(1) = tamb * (1.0 - effhx)
     b(2) = - emisc * sb * surfa
         * (tco1**2 + tsur**2) * (tco1 + tsur) * tsur
     b(5) = - gamma * mflow1 * aircp * tamb
     b(6) = qabs
     b(8) = udwall * area * troom
* start iterations
     k = 0
110 continue
     k = k + 1
* solve for unknowns using lapack matrix solver
* see http://www.netlib.org -> lapack -> lapack/double
      call dgesv( neq, one, a, neq, ipiv, b, neq, ifail )
      if (ifail .ne. 0 ) then
         write (luw, 813) unit, type, ifail, nint(month), nint(hour)
         format (//1x,'**** ERROR *****',/1x,'UNIT ',i3,
 813
            ' TYPE ', i3, ' UNGLAZED TRANSPIRED COLLECTOR', /1x,
            'MATRIX SOLVER ERROR, IFAIL = ', i3, /1x,
            'MONTH = ', i2,' HOUR = ', i3)
      endif
      do i = 1, neq
        x(i) = b(i)
      enddo
      tcol = x(1)
```

Acres 1

```
Inputs:
   1. Month of year
   2. Hour of month
   3. Radiation incident on the collector (kJ/m2)
   4. Ambient temperature (C)
   5. Sky temperature (C)
   6. Atmospheric pressure (kPa)
   7. Internal gains due to people, equipment, etc. (kJ/hr)
   8. Supply air flow rate from collector air-handling units (m3/hr)
   9. Minimum outdoor air flow rate through collector/summer bypass
      damper (m3/hr)
  10. Supply air flow rate from no-collector air-handling units
      (m3/hr)
  11. Outdoor air flow rate through no collector (m3/hr)
 Outputs:
   1. Plenum air temperature (C)
   2. Collector outlet air temperature (C)
   3. Mixed air temperature (C)
   4. Supply air temperature (C)
   5. Collector surface temperature (C)
   Energy savings rate (kJ/hr)
   7. Convection from collector (kJ/hr)
   8. Convection from wall (kJ/hr)
   9. Radiation from collector (kJ/hr)
  10. Radiation from wall (kJ/hr)
  11. Conduction through wall (kJ/hr)
  12. Reduced conduction through wall because of collector (kJ/hr)
  13. Absorbed energy rate (kJ/hr)
  14. Auxiliary heating rate (kJ/hr)
  15. Outdoor air flow rate through collector/summer bypass damper
  16. Heat exchanger effectiveness of collector (C)
  17. Solar efficiency of the collector
  18. Pressure drop across collector plate (kPa)
  19. Bypass damper position = 0.0 if open
                              = 1.0 if closed
  20. Heat rate supplied by a traditional heating system (kJ/hr)
  21. Additional fan power required (kJ/hr)
* For this model to correctly calculate the performance of transpired
* collectors, the approach velocity (appvel) should be greater than
* 72 m/hr. Otherwise, there will be convection losses from the
* collector between the holes, and the collector's performance will be
* reduced. Also, the collector pressure drop (pcol) should be at least
* 0.025 Pa to ensure uniform flow through the collector. Otherwise,
* sections of the collector will become hotter than others, and
* radiation losses from the collector will increase. Again, this will
* reduce the collector's performance. To achieve a sufficient pressure
* drop, the porosity (por) should be about 0.005 to 0.01 for the given
  approach velocities. If these approach velocity and pressure drop
  conditions are not met, this subroutine will write a warning to a
        It is important to emphasize that a collector _can_ be operated
* at approach velocities and pressure drops below these values, but this
  model will just over predict the performance.
```

```
* Written by David Summers, Solar Energy Lab, U. Wisconsin - Madison
```

* for M.S. thesis, December 1995.

implicit none

* type71 variables

- * parameters
 real*8 area, ht, diam, pitch, emisc, absor, depth, emisw, rwall
 real*8 ua, troom, tbypass, qmax, nitebp
- * inputs
 real*8 month, hour, rad, tamb, tsky, patm, gain, flow1, minout1
 real*8 flow2, out2
- values calculated directly from parameters and inputs real*8 por, surfa, udwall, qabs, tgnd, tsur, qbldg real*8 aircp, aircond, airvisc, airden, a0, a1, a2 real*8 mflow1, mflow2, mflow, gmin, beta, qtrad
- * outputs and other variables
 real*8 gamma, tout, tcol, tplen, twall, qvcol, qrcol, qvwall
 real*8 qrwall, qdwall, red, effhx, appvel
 real*8 tmix, tsup, qaux1, lowg, hig, oldg, dif, diflim, small, g
 real*8 zeta, pcol, plenden, f, dh, plenvel, pfric, pbuoy, pacc
 real*8 delp, fanpw
 real*8 qaux2, qaux, film, tsolair, qpot, qred, qu, qsave, soleff
 integer istr, i, j, jmax
 real warn
 character*10 warnfile

* TRNSYS variables

character*3 ycheck, ocheck real time, t, dtdt, par, s, time0, tfinal, delt double precision xin, out integer*4 info, unit, type integer np, ni, no, icntrl, iwarn, nstore, iav, iunit integer lur, luw, iform, luk

parameter (np=14, ni=11, no=21)
dimension par(np), xin(ni), out(no), info(15)
dimension ycheck(ni), ocheck(no)

* UTC common block (used in utcsolve subroutine)

common /utc/ area, ht, diam, pitch, emisc, depth, emisw, troom, flow1, mflow1, por, surfa, udwall, tamb, qabs, tsur, aircp, aircond, airvisc, airden, unit, type, month, hour, g

* TRNSYS common blocks

common /sim/ time0, tfinal, delt, iwarn
common /store/ nstore, iav, s(5000)

```
common /lunits/ lur, luw, iform, luk
     data iunit/0/
     diflim = 1.0e-4
     small = 1.0e-4
            = 100
     jmax
     warnfile = 'WARN.UTC'
            = 9.8 * 3600**2 ! acceleration of gravity, m/hr2
*_____
* first call of simulation
     if ( info(7) .gt. -1 ) go to 10
     info(10) = 1
* check parameters
     info(6) = no
     call typeck( 1, info, ni, np, 0 )
* setup for warnings
     unit = info(1)
     type = info(2)
     istr = info(10)
     s(istr) = -1.0
     open(unit = 71, file = warnfile, status = 'unknown')
     write (71,800) type
 800 format ('Type', i3, 'warnings:')
* set variable types
     data ycheck/'MN1','TD1','IR1','TE1','TE1','PR2','PW1','VF1','VF1',
                 'VF1','VF1'/
     data ocheck/'TE1','TE1','TE1','TE1','TE1','PW1','PW1','PW1','PW1',
                 'PW1', 'PW1', 'PW1', 'PW1', 'VF1', 'DM1', 'DM1', 'PR2',
    &
                 'DM1','PW1','PW1'/
     call rcheck( info, ycheck, ocheck )
* if its a different unit, set parameters
 10
     continue
     if (info(1) .eq. iunit) go to 20
     iunit = info(1)
            = par(1)
     area
     ht
            = par(2)
     diam
            = par(3)
     pitch = par(4)
     emisc = par(5)
absor = par(6)
      depth = par(7)
```

```
emisw
             = par(8)
     rwall
            = par(9)
     ua
             = par(10)
     troom
            = par(11)
     tbypass = par(12)
     qmax
             = par(13)
     nitebp = par(14)
          = 0.907 * (diam / pitch)**2
     surfa = (1 - por) * area
     udwall = 1.0 / rwall
* set inputs
20
     continue
     month = xin(1)
            = xin(2)
     hour
             = xin(3)
     rad
     tamb
             = xin(4)
     tsky
             = xin(5)
     patm
             = xin(6)
     gain
             = xin(7)
     flow1
           = xin(8)
     minout1 = xin(9)
     flow2 = xin(10)
     out2
           = xin(11)
     gabs = rad * surfa * absor
     tqnd = tamb
     tsur = (0.5 * ((tsky+273.15)**4 + (tgnd+273.15)**4))**0.25
            - 273.15
* calculate building loss, assuming no reduced wall loss
     qbldg = ua * (troom - tamb) - gain
* calculate ambient air properties (curve-fits from EES)
             = 1.0062 + 3.6028e-5*tamb
     aircp
             - 1.0885e-6*tamb*tamb + 1.3791e-8*tamb**3
    &
     aircond = 0.08659 + 2.6993e-4*tamb
     airvisc = 0.06201 + 1.7428e-4*tamb
     a0 = -5.1936e-5 + 1.2758e-2*patm
     a1 = -5.7037e-7 - 4.6865e-5*patm
     a2 = -5.6746e-9 + 1.5511e-7*patm
     airden = a0 + a1*tamb + a2*tamb*tamb
     mflow1 = flow1 * airden
     mflow2 = flow2 * airden
     mflow = mflow1 + mflow2
     qtrad = (minout1 + out2) * airden * aircp * (troom - tamb)
       + qbldg
     if ( qtrad .lt. small ) qtrad = 0.0
```

```
* check if summer bypass damper is open
     if (tamb .qt. tbypass) then
        do i = 1.no
           out(i) = 0.0
        enddo
                                          ! tout = tamb
        out(2) = tamb
                                          ! tmix = tamb
        out(3) = tamb
                                          ! tsup = tamb
        out(4) = tamb
                                         ! 100% fresh air
        out(15) = flow1
        return 1
     endif
* check air flow rates
     if (minout1 .gt. flow1 .or. out2 .gt. flow2) then
        write (luw, 810) unit, type
        format (//1x,'**** ERROR *****',/1x,'UNIT ',i3,
810
           ' TYPE ', i3, ' UNGLAZED TRANSPIRED COLLECTOR', /1x,
    &
           'CHECK AIR FLOW RATES IN DECK')
    &
        stop
     endif
      if (flow2 .gt. small) then
        beta = out2 / flow2
        beta = 0.0
     endif
      if (flow1 .gt. small) then
        gmin = minout1 / flow1
      else
        qaux = qtrad
        do i = 1, no
           out(i) = 0.0
         enddo
        out(2) = tamb
out(3) = tamb
out(4) = tamb
                                            ! tout = tamb
                                            ! tmix = tamb
                                            ! tsup = tamb
        out(14) = qaux
        out(20) = qtrad
         return 1
      endif
*_____
* at night, open bypass damper if nitebp = 1
      if ( qabs .lt. small .and. nitebp .gt. 0.5 ) then
         gamma = gmin
         tout = tamb
         tmix = gamma*tout + (1.0 - gamma)*troom
         tsup = troom + qbldg / (mflow * aircp)
         qaux = qtrad
```

```
do i = 1, no
           out(i) = 0.0
        enddo
        out(2)
               = tout
        out(3) = tmix
        out(4) = tsup
        out(14) = qaux
        out(15) = minout1
        out(20) = qtrad
        return 1
     endif
* find gamma such that qaux1 is minimized. in the winter, this will
* usually be when gamma = gmin. if the air is too hot for this
* condition, then no auxiliary heat is needed (i.e. qaux1 = 0) and
* gamma > gmin. if gamma is between gmin and 1.0, then use the
* bisection method to determine gamma.
*_____<del>-</del>
* calculate necessary supply air temperature to meet load
     tsup = troom + qbldg / (mflow * aircp)
* solve equations for gamma = gmin
     gamma = gmin
     call utcsolve( gamma, tout, tcol, tplen, twall,
                    qvcol, qrcol, qvwall, qrwall, qdwall,
                    red, effhx, appvel )
     tmix = gamma*tout + (1.0 - gamma)*troom
      if (tmix .1t. tsup ) then
         calculate auxiliary heat
         qaux1 = mflow1 * aircp * (tsup - tmix)
      else
         solve equations for gamma = 1
         qaux1 = 0.0
         gamma = 1.0
         call utcsolve( gamma, tout, tcol, tplen, twall,
                        qvcol, qrcol, qvwall, qrwall, qdwall,
     &
                        red, effhx, appvel )
         tmix = tout
         if (tmix .lt. tsup) then
            use bisection method to find gamma
            j = 0
            lowg = gmin
            hig = 1.0
            gamma = (lowg + hig) / 2.0
 100
            continue
               call utcsolve (gamma, tout, tcol, tplen, twall,
                              qvcol, qrcol, qvwall, qrwall, qdwall,
     &
                              red, effhx, appvel )
     δ.
               tmix = gamma*tout + (1.0 - gamma)*troom
```

```
if (tmix .1t. tsup) then
                 hig = gamma
              else
                 lowg = gamma
              endif
              oldg = gamma
              gamma = (lowg + hig) / 2.0
              dif = abs( gamma - oldg )
           if (dif .gt. diflim .and. j .lt. jmax ) go to 100
109
           if ( j .ge. jmax ) then
              write (luw, 811) unit, type, dif, nint(month), nint(hour)
              format (//1x,'***** ERROR *****',/1x,'UNIT ',i3,
811
                  ' TYPE ',i3,' UNGLAZED TRANSPIRED COLLECTOR',/1x,
                  'NO CONVERGENCE IN J LOOP, DIF = ',e7.2,/1x,
    &
                  'MONTH = ', i2,' HOUR = ', i3)
    &
              stop
           endif
        endif
     endif
* calculate additional fan power
* calculate pressure drop across collector
     zeta = 6.82 * ((1-por)/por)**2 * (red)**(-0.236)
     pcol = 0.5 * airden * appvel * appvel * zeta * 7.71605e-11
                               ! factor of 7.7e-11 to convert units
* calculate air density in plenum
     plenden = a0 + a1*tplen + a2*tplen*tplen
* calculate friction pressure drop through plenum
      f = 0.05
                  ! estimate
      dh = 4.0 * (depth * area/ht) / (2.0 * (area/ht + depth))
      plenvel = 0.5 * appvel * ht / depth
     pfric = f * (ht / dh) * plenden * plenvel**2 / 2.0
      convert units to kPa
      pfric = pfric / ( 3600.0**2 * 1000.0 )
* calculate buoyancy pressure term
      pbuoy = (airden - plenden) * g * ht
      convert units to kPa
      pbuoy = pbuoy / (3600.0**2 * 1000.0)
* calculate acceleration pressure drop
      pacc = plenden * (2.0*plenvel)**2 / 2.0
      convert units to kPa
      pacc = pacc / (3600.0**2 * 1000.0)
* calculate total pressure drop and fan power
```

```
delp = pcol + pfric - pbuoy + pacc
     fanpw = gamma * flow1 * delp
* calculate reduced conduction through wall
                        ! (kJ/hr-m2-C) film coefficient for air
     film = 54.0
                                      against original wall
     tsolair = tamb + (emisw * rad / film) ! sol-air temp for
                                              ! absor = emis
     qpot = udwall * area * (troom - tsolair) ! potential conduction
                                              ! reduced conduction
     gred = gpot - gdwall
* calculate total auxiliary heat required, subtracting reduced wall
* loss since it was assumed to be zero when qbldg was calculated
     qaux2 = mflow2 * aircp * ( tsup - beta*tamb - (1.0-beta)*troom )
     qaux = qaux1 + qaux2 - qred
     if ( qaux .lt. small ) qaux = 0.0
* calculate energy savings
                                   ! useful energy gained by air
           = qvcol + qvwall
                                      ! energy saved
     qsave = qtrad - qaux
* calculate solar efficiency
     if (rad .gt. small) then
        soleff = qvcol / ( rad * area )
        if ( soleff .gt. 1.0 ) soleff = 1.0
         if (soleff .1t. 0.0) soleff = 0.0
      else
         soleff = 0.0
      endif
* write warnings to file
      if ( info(7) .1t. 0 ) go to 30
     warn = -1.0
      if (appvel .1t. 72.0 ) then
         write (71,801) month, hour
         format (/, 'month = ',f3.0,' hour = ',f5.1)
 801
         write (71,802) appvel
         format ('* approach velocity = ',f5.2,' m/hr',/,' For appvel',
 802
           ' < 72 m/hr, model overpredicts performance')
         warn = 1.0
      endif
      if (pcol .1t. 0.025) then
         if ( warn .lt. 0.0 ) then
            write (71,801) month, hour
         endif
```

```
write (71,803) pcol
        format ('* pressure drop = ',f6.4,' kPa',/,' For pcol',
803
           ' < 0.025 kPa, model overpredicts performance')
        warn = 1.0
     endif
     if ( qaux .gt. qmax ) then
        if ( warn .1t. 0.0 ) then
           write (71,801) month, hour
        endif
        write (71,804) qaux, qmax
804
        format ('* qaux = ',e8.2,' kJ/hr; qmax = ',e8.2,' kJ/hr',/,
           ' auxiliary heater(s) too small to meet load')
        warn = 1.0
     endif
     if (tmix .gt. tsup) then
        if ( warn .1t. 0.0 ) then
           write (71,801) month, hour
        endif
        write (71,805) tmix, tsup
        format ('* actual tsup = ',f5.1,' C; desired tsup = ',f5.1,
805
           'C',/,' tsup is too hot, summer bypass damper should',
    &
           ' have been opened')
        tsup = tmix
        warn = 1.0
     endif
     if (warn .gt. 0.0) then
        istr = info(10)
        if ( s(istr) .1t. 0.0 ) then
           write (luw, 812) unit, type, warnfile
           format (//2x,'**** WARNING ***** UNIT', i3, ' TYPE', i3/4x,
812
               'CHECK ', a10,
    δ.
               ' FOR UNGLAZED TRANSPIRED COLLECTOR WARNINGS')
    δ.
           s(istr) = 1.0
           iwarn = iwarn + 1
         endif
     endif
30
     continue
* set outputs
     out(1) = tplen
     out(2) = tout
     out(3) = tmix
     out(4) = tsup
     out(5) = tcol
     out(6) = gsave
     out(7) = qvcol
     out(8) = qvwall
     out(9) = qrcol
     out(10) = qrwall
     out(11) = qdwall
```

```
out(12) = qred
     out(13) = qabs
     out(14) = gaux
     out(15) = gamma * flow1
     out(16) = effhx
     out(17) = soleff
     out(18) = pcol
     out(19) = 1.0
     out(20) = qtrad
     out(21) = fanpw
     return 1
     end
subroutine utcsolve( gamma, tout, tcol, tplen, twall,
                         qvcol, qrcol, qvwall, qrwall, qdwall,
                         red, effhx, appvel )
* This subroutine solves the energy balances on the collector, air, and
 outside wall surface. The temperatures and heat flows are output.
* The temperatures are:
   tout = air at the outlet from the collector
   tcol = collector surface
   tplen = air in the plenum
   twall = outside wall surface
   troom = air in the room
   tamb = ambient air
   tsur = surroundings (sky & ground) for radiation calculation
* All temperatures in this subroutine are converted from Celsius to
* Kelvin at the beginning, and then they are converted back to Celsius
* at the end for the main UTC subroutine.
* The heat flows are labelled 'qXsource', where X = (r, v, d) for
* radiation, convection, conduction. The source of the heat flow is
* defined for the usual direction of heat flow for winter operation,
* from the inside of the building to the outside. So, qvwall is the
* convection from the wall to the plenum (not wall to the room).
* Similarly, grcol is the radiation from the collector to the
* surroundings (not collector to wall). The only exceptions are qabs,
* the absorbed solar energy, and qdwall, the conduction through the
* wall. The heat transfer coefficients are labelled the same way.
     implicit none
```

* TRNSYS variables

integer lur, luw, iform, luk

```
* utcsolve variables
     arguments
     real*8 gamma, tout, tcol, tplen, twall, qvcol, qrcol, qvwall
     real*8 grwall, gdwall, red, effhx, appvel
     UTC common block variables
     real*8 area, ht, diam, pitch, emisc, depth, emisw, troom
     real*8 flow1, mflow1, por, surfa, udwall, tamb, qabs, tsur
     real*8 aircp, aircond, airvisc, airden, month, hour, g
     integer*4 unit, type
     subroutine internal variables
     real*8 pi, sb, diflim, small
     real*8 holevel, plenvel, nud, hvcol, pr, reht, nuht, hvwall
     double precision a, b
     real*8 x, res, dif
     integer i, j, k, kmax, neq, one, ipiv, ifail
     parameter (neq = 8)
     dimension a(neq, neq), b(neq), x(neq), ipiv(neq), res(neq)
* TRNSYS common block
     common /lunits/ lur, luw, iform, luk
* UTC common block
     common /utc/ area, ht, diam, pitch, emisc, depth, emisw, troom,
                   flow1, mflow1, por, surfa, udwall, tamb, qabs, tsur,
                   aircp, aircond, airvisc, airden, unit, type,
    &
                   month, hour, g
     &
            = 3.14159265359
      pi
                                ! Stefan-Boltzmann, kJ/hr-m2-K4
      sb
            = 2.0412e-7
      diflim = 1.0e-4
      small = 1.0e-4
      kmax
            = 100
      one
      ifail
            = 0
* check for no flow through collector
      if (gamma .lt. small) then
         tout = tamb
         tcol
                = tamb
         tplen = tamb
         twall = tamb
         qvco1 = 0.0
         qrcol = 0.0
         qvwall = 0.0
         qrwall = 0.0
         qdwall = udwall * area * ( troom - tplen )
```

```
= 0.0
        red
        effhx = 0.0
        appvel = 0.0
        return
     endif
* convert celsius to kelvin
     troom = troom + 273.15
     tamb = tamb + 273.15
     tsur = tsur + 273.15
* calculate approach, hole, and plenum velocities
     appvel = gamma * flow1 / area
     holevel = gamma * flow1 / ( area * por )
     plenvel = 0.5 * appvel * ht / depth
* calculate heat exchanger effectiveness for collector
     red = airden * holevel * diam / airvisc
     nud = 2.75 * (pitch/diam)**(-1.2) * (red)**(0.43)
     hvcol = nud * aircond / diam
     effhx = 1 - exp( - hvcol * surfa / (gamma * mflow1 * aircp) )
* calculate heat transfer coefficient for wall to air convection
     pr = 0.71
     reht = airden * plenvel * ht / airvisc
      if ( reht .gt. 500000 ) then
        nuht = (0.037*reht**0.8 - 871.0) * pr**(1.0/3.0)
      else
        nuht = 0.664 * reht**0.5 * pr**(1.0/3.0)
      endif
     hvwall = nuht * aircond / ht
* solve simultaneous equations for unknown temperatures and heat flows
* [a][x] = [b]
* initial guesses for collector and wall temperatures
      tcol = tamb
      twall = tamb
* calculate [a] matrix and [b] array
      do i = 1, neq
         do j = 1, neq
           a(i,j) = 0.0
         enddo
         b(i) = 0.0
      enddo
```

```
twal1 = x(5)
* calculate [a] matrix and [b] array
      do i = 1, neq
         do j = 1, neq
            a(i,j) = 0.0
         enddo
         b(i) = 0.0
      enddo
      a(1,1) = - effhx
      a(1,2) = 1.0
      a(2,1) = - emisc * sb * surfa
              * (tco1**2 + tsur**2) * (tco1 + tsur)
     a(2,3) = 1.0
     a(3,1) = sb * area * (tcol**2 + twall**2) * (tcol + twall)
              / (1.0/\text{emisw} + 1.0/\text{emisc} - 1.0)
     a(3,4) = 1.0
      a(3,5) = - sb * area * (tcol**2 + twall**2) * (tcol + twall)
              / (1.0/\text{emisw} + 1.0/\text{emisc} - 1.0)
      a(4,2) = hvwall * area
      a(4,5) = - hvwall * area
      a(4,6) = 1.0
      a(5,2) = -gamma * mflow1 * aircp
      a(5,7) = 1.0
      a(6,3) = 1.0
      a(6,4) = -1.0
      a(6,7) = 1.0
      a(7,4) = -1.0
      a(7,6) = -1.0
      a(7,8) = 1.0
      a(8,5) = udwall * area
      a(8,8) = 1.0
      b(1) = tamb * (1.0 - effhx)
      b(2) = - emisc * sb * surfa
           * (tco1**2 + tsur**2) * (tco1 + tsur) * tsur
      b(5) = - gamma * mflow1 * aircp * tamb
      b(6) = qabs
      b(8) = udwall * area * troom
* calculate residuals
      do i = 1, neq
         res(i) = 0.0
         do j = 1, neq
            res(i) = res(i) + a(i,j) * x(j)
         res(i) = res(i) - b(i)
      enddo
* check for convergence
      dif = 0.0
      do i = 1, neq
```

```
dif = sqrt(dif**2 + res(i)**2)
     enddo
119 if (dif .gt. diflim .and. k .lt. kmax ) go to 110
     if ( k .ge. kmax ) then
        write (luw, 815) unit, type, dif, nint(month), nint(hour)
        format (//1x,'***** ERROR *****',/1x,'UNIT ',i3,
815
           ' TYPE ', i3, ' UNGLAZED TRANSPIRED COLLECTOR', /1x,
    &
           'NO CONVERGENCE IN K LOOP, DIF = ', e7.2, /1x,
    ₽.
           'MONTH = ', i2, ' HOUR = ', i3)
        stop
     endif
* solution has been found
     tcol = x(1)
     tplen = x(2)
     qrcol = x(3)
     qrwall = x(4)
     twal1 = x(5)
     qvwall = x(6)
     qvcol = x(7)
     qdwal1 = x(8)
* calculate tout from energy balance
     tout = tplen + qvwall / ( gamma * mflow1 * aircp )
* convert kelvin to celsius
     tout = tout -273.15
     tco1 = tco1 - 273.15
     tplen = tplen - 273.15
     twal1 = twal1 - 273.15
     troom = troom - 273.15
     tamb = tamb - 273.15
     tsur = tsur - 273.15
     return
     end
*_______________
```

随前设置的由 公 36 87 39 8度度 187 97 50 50 5

A.2 TRNSYS Manual Page

TYPE 71: UNGLAZED TRANSPIRED COLLECTOR SYSTEM

General Description

Unglazed transpired collectors (UTCs) consist of a perforated, solar-absorbing plate mounted on a large south-facing wall. Air is drawn through the holes in the plate, into the plenum, and finally into the building, as shown in Figure 1.

Figure 1: Schematic diagram of an unglazed transpired collector system.

This component models a UTC system, shown in Figure 2. The entire system includes the UTC plate and the building on which it is mounted. The basic energy balances are solved and the energy savings is calculated every time step for which the UTC system is operating (i.e. the bypass damper is closed). The bypass damper is opened when the ambient temperature is above the summer bypass set temperature. The bypass damper is also opened at night when the automatic night bypass is on (parameter 14).

Figure 2: Complete overview of the UTC system model.

Nomenclature

A - total collector area (m²)

 A_S - collector surface area (m²) = (1- σ) A

^cp - specific heat (kJ/kg-C)

D - hole diameter (m)

h_{cond,wall} - coefficient for conduction through the wall (kJ/hr-m²-C)

h_{conv,col-air} - coefficient for convection from the collector to the air (kJ/hr-m²-C)

h_{conv,wall-air} - coefficient for convection from the outside wall surface to the air (kJ/hr-m²-C)

I_T - incident solar radiation on the collector surface (kJ/hr-m²)

 \dot{m}_{out} - outdoor air mass flow rate through UTC (kg/hr) = $\gamma \dot{m}_1$

 \dot{m}_1 - mass flow rate of air supply from UTC system (kg/hr)

mass flow rate of air supply from conventional system (kg/hr)

NuD - Nusselt number where hole diameter is the characteristic length

P - hole pitch (m)

Qabs - absorbed solar heat rate (kJ/hr)

Qaux - auxiliary heat rate (kJ/hr)

Qbldg - building heat loss rate (kJ/hr)

Qcond, wall - conduction rate through the wall (kJ/hr)

Qconv,col-air - convection rate from the collector to the air (kJ/hr)

Qconv, wall-air - convection rate from the outside wall surface to the air (kJ/hr)

Qrad,col-sur - radiation rate from the collector to the surroundings (kJ/hr)

Qrad, wall-col - radiation rate from the outside wall surface to the back of the

collector (kJ/hr)

Qsave - saved energy rate (kJ/hr)

Qtrad - traditional heating system heat rate (kJ/hr)

Qu useful energy rate (kJ/hr)

Rep - Reynolds number where hole diameter is the characteristic length

 T_{amb} - ambient air temperature (C)

T_{col} collector plate temperature (C)

Tmix - mixed air temperature (C)

Tout . collector outlet air temperature (C)

Tplen - plenum air temperature (C)

Troom - room air temperature (C)

T_{sup} - supply air temperature (C)

T_{Sur} - radiative surroundings temperature (C)

Twall - outside wall surface temperature (C)

 α_{col} - collector plate absorptivity

 β - fraction of conventional system supply air that is outdoor air

ε_{col} - collector plate emissivity

 ϵ_{HX} - heat exchanger effectiveness of collector

 ϵ_{wall} - outside wall surface emissivity

 γ - fraction of UTC system supply air that is outdoor air

σ - collector porosity

 σ_{Sb} - Stefan-Boltzmann constant (kJ/hr-m²-K⁴)

Mathematical Description

The first step in predicting the thermal performance of the UTC system is to calculate the outlet air temperature from the collector, T_{out} . There are four fundamental energy balance equations that are solved to find T_{out} .

 $\dot{m}_{out} c_p (T_{plen} - T_{amb}) = \dot{Q}_{conv,col-air}$ $\dot{m}_{out} c_p (T_{out} - T_{plen}) = \dot{Q}_{conv,wall-air}$ $\dot{Q}_{cond,wall} = \dot{Q}_{conv,wall-air} + \dot{Q}_{rad,wall-col}$

 $\dot{Q}_{abs} + \dot{Q}_{rad,wall-col} = \dot{Q}_{conv,col-air} + \dot{Q}_{rad,col-sur}$ The labelling convention that is used for heat flows is $\dot{Q}_{mode,from-to}$. So $\dot{Q}_{conv,col-air}$ is convection from the collector to the air. The useful energy from the UTC system is the sum

of the convection to the air from the collector and from the outside wall.

$$\dot{Q}_u = \dot{Q}_{conv,col-air} + \dot{Q}_{conv,wall-air}$$

The rate equations for the energy flows are necessary to solve the energy balance equations. For convection from the collector to the air, an empirical heat transfer correlation is used [Kutscher, 1992].

$$Nu_D = 2.75 (P/D)^{-1.2} Re_D^{0.43}$$

This correlation determines the Nusselt number based on hole diameter that is used to find $h_{\text{conv,col-air}}$. The heat exchanger effectiveness of the collector is calculated.

$$\varepsilon_{HX} = 1 - \exp((h_{conv,col-air} A_s) / (\dot{m}_{out} c_p))$$

This effectiveness is used in the relation between the plenum air temperature and the collector temperature.

$$\varepsilon_{HX} = (T_{plen} - T_{amb})/(T_{col} - T_{amb})$$

This equation is effectively a rate equation for $\dot{Q}_{conv,col-air}$. The following rate equations are also used with the energy balances.

Qconv, wall-air = hconv, wall-air A (Twall - Tplen)

 $\dot{Q}_{cond,wall} = h_{cond,wall} A (T_{room} - T_{wall})$

 $\dot{Q}_{rad,wall-col} = \sigma_{sb} A (T_{wall}^4 - T_{col}^4) / (1/\epsilon_{wall} + 1/\epsilon_{col} - 1)$

 $\dot{Q}_{abs} = \alpha_{col} I_T A_s$

 $\dot{Q}_{rad,col-sur} = \varepsilon_{col} \sigma_{sb} A_s (T_{col}^4 - T_{sur}^4)$

The outlet air from the collector is mixed with recirculated air from the building.

$$T_{mix} = \gamma T_{out} + (1-\gamma) T_{room}$$

The mixed air is heated to the necessary supply temperature to meet the heating load.

$$\dot{Q}_{aux} = \dot{m}_1 c_p (T_{sup} - T_{mix})$$

The recirculation damper varies γ , the fraction of the supply air that is drawn from the outside through the collector, such that the auxiliary energy is minimized.

There are three energy savings mechanisms for a UTC system: active solar gain, recaptured wall loss, and reduced wall loss. However, the energy savings of the UTC system is not simply the sum of these three components. Fundamentally, the energy

savings is the reduction in the heat required from a traditional system, which translates into a reduction of the heating bill. The heat required from an auxiliary unit of a UTC system is less than the heat required from a traditional heating system.

$$\dot{Q}_{save} = \dot{Q}_{trad} - \dot{Q}_{aux}$$

The energy savings never exceeds the heating requirements of the building with a traditional system.

TRNSYS Component Configuration

PARAMETER N	<u>10.</u>	DESCRIPTION	
1	Α	- collector area (m ²)	
2	ht	- collector height (m)	
3	D	- collector hole diameter (m)	
4	P	- collector hole pitch (m)	
5	$\epsilon_{ m col}$	- collector emissivity	
6	α_{col}	- collector absorptivity	
7	depth	- plenum depth (m)	
8	$\epsilon_{ m wall}$	- emissivity of wall behind collector	
9	Rwall	- R-value of the wall behind the collector (°C-m-hr/kJ)	
10	UA	- total UA-value of the building walls and roof (kJ/hr-	
		°C)	
11	T_{room}	- room air temperature (°C)	
12	T_{bypass}	- ambient air temperature above which the summer	
		bypass damper is opened (°C)	
13	Qaux,max	- maximum auxiliary heat rate available (kJ/hr)	
14	Night bypass mode:		
		0 - bypass not automatically opened at night	

1 - bypass automatically opened at night

INPUT NUMBER		<u>DESCRIPTION</u>
1	month	- month of the year
2	hour	- hour of the month

3	$\mathbf{I_T}$	- solar radiation incident on the collector (kJ/hr-m ²)
4	T_{amb}	- ambient air temperature (°C)
5	T_{Sky}	- radiative sky temperature (°C)
6	Patm	- atmospheric pressure (kPa)
7	Gain	- internal building gains (kJ/hr)
8	Flow ₁	 supply air flow rate from collector air-handling units (m³/hr)
9	MinOut ₁	- minimum outdoor air flow rate through collector / summer bypass damper (m ³ /hr)
10	Flow ₂	 supply air flow rate from no-collector air-handling units (m³/hr)
11	Out ₂	- outdoor air flow rate through no collector (m ³ /hr)
OUTPUT NUMBER		<u>DESCRIPTION</u>
1	$T_{ m plen}$	- plenum air temperature (°C)
2	$\overline{T_{out}}$	- collector outlet air temperature (°C)
3	T_{mix}	- mixed air temperature (°C)
4	$T_{\mathbf{sup}}$	- supply air temperature (°C)
5	T_{col}	- collector surface temperature (°C)
6	Ż save	- energy savings rate (kJ/hr)
7	Qconv,col-air	- convection from collector to air (kJ/hr)
8	Qconv,wall-air	- convection from wall to air (kJ/hr)
9	Qrad,col-sur	- radiation from collector to surroundings (kJ/hr)
10	Qrad,wall-col	- radiation from wall to collector (kJ/hr)
11	Qcond, wall	- conduction through wall (kJ/hr)
12	Q red,wall	- reduced conduction through wall because of collector
		(kJ/hr)
13	\dot{Q}_{abs}	- absorbed energy rate (kJ/hr)
14	Ċ aux	- auxiliary energy rate (kJ/hr)
15	γ Flow $_1$	- outdoor air flow rate through collector / summer
		bypass damper (m ³ /hr)
16	$\epsilon_{ m HX}$	- heat exchanger effectiveness of collector
17	η_{solar}	- solar efficiency of collector
18	ΔP_{col}	- pressure drop across collector plate (kPa)

19 Bypass damper position:

0 - bypass damper is open

1 - bypass damper is closed

20 Qtrad

- heat rate supplied by a traditional heating system

(kJ/hr)

21 Fan power - additional fan power required (kJ/hr)

Information Flow Diagram

Parameters:

1. A

8. ε_{wall}

2. ht

9. Rwall

- 3. D
- 4. P
- 5. ε_{col}
- 6. α_{col}
- 7. depth

- 10. UA
- 11. Troom
- 12. T_{bypass}
- 13. Qaux,max
- 14. Night bypass mode

References

- 1. Summers, David N., <u>Thermal Simulation and Economic Assessment of Unglazed Transpired Collectors</u>, M.S. Thesis in Mechanical Engineering, University of Wisconsin-Madison, 1995.
- 2. Kutscher, Charles F., An Investigation of Heat Transfer for Air Flow Through Low Porosity Perforated Plates, Ph.D. Thesis in Mechanical Engineering, University of Colorado, 1992.