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Abstract-In the present study, a modified turbulence model has been developed having the goals of 
representing the dominant buoyancy effect, and also the low turbulence due to buoyancy and the viscous 
effects in the vicinity of the wall for a zone heated passively with a Trombe wall, where the magnitudes 
of aspect ratio and Rayleigh number equal to one and IO’O, respectively. Standard viscosity/diffusivity 
and Daly Harlow approximations for the definition of the scalar quantities are used and compared to each 
other. The model and the code solving the governing equations may be applied to similar structures, 
namely, enclosures with aspect ratio about one, having inlet and outlet openings on the heated side. 
Also, improving the computational convergence and decreasing the computer time are goals of this work. 

Turbulence model Trombe wall Natural convection 

NOMENCLATURE 

A = Aspect ratio 
a, = Coefficients of discretized equation [equation (16)] 

c,,, c+ c,, = Coefficients of turbulence model [equation (8)] 
c+ = Coefficient of modified turbulence model [equation (13)] 
d = Distance between glass plate and Trombe wall (m) 
D = Source term in turbulence model [equation (7)] 
E = Source term in turbulence model leouation (8)I 

f,,f,,f, = Functions of turbulence model [equation (S)] ‘_ 
g, = Gravitational acceleration (m/s2) 

G, = Buoyancy production/destruction (m2/s’) 
H = Height of enclosure (m) 
k = Turbulence kinetic energy (m2/s2) 
L = Width of enclosure (m) , 
n = Number of iteration or normal direction 

P, = Shear stress production (m2/s3) 
P = Pressure (Pa) 

Ra = Rayleigh number 
Re, = Turb&nce Reynolds number 

s = Width of ventilation hole (m) 
S$ = Dependent source term 
St = Independent source term 

T = Temperature (“C) 
t = Time (s) 

u,, = Fluctuative velocity (m/s) 
U = Horizontal velocity (m/s) 
U, = Velocity (m/s) 
V = Verticai velocity (m/s) 
w = Thickness of Trombe wall (m) 
x = Horizontal coordinate 
y = Vertical coordinate 

Greek symbols 
a = Under relaxation factor 
B = Volume expansivity (l/K) 
t = Dissipation of turbulence kinetic energy (m2/s3) 
4 = Scalar dependent variable 
di = Any dependent variable in numerical solution [equation (l6)] 
A = Shear stress production or buoyancy production/destruction or turbulent viscosity or density 

[equation (20)] 
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p = Dynamic viscosity (kg/ms) 
pt = Turbulent dynamic viscosity (kg/ms) 
Y = Kinematic viscosity (m*/s) 
vt = Turbulent kinematic viscosity (m*/s) 
p = Density (kg/m3) 

ckr o,, e( = Prandtl numbers for turbulence kinetic energy, temperature and dissipation of turbulence 
kinetic energy, respectively 

Subscript 
in = Inlet value 

1. INTRODUCTION 

Natural convection in square and tall enclosures has a wide theoretical background in the literature 
[l-3]. Since the problem is related to general events in energy conversion and daily life, namely 
nuclear reactors, electronic toolings and residential zones, also experimental studies, including the 
scope of modeling convection in enclosures, have been growing aspects of heat transfer [4,5]. In 
the past decade, the turbulent characteristics of this type of flow have been the major part of the 
investigations. Both numerical and experimental results have been obtained in tall enclosures [6,7] 
and square ones [8,9] in modeling the flow. Especially, the control of indoor air has increased 
interest also in non-buoyant turbulent air flow due to cooling and ventilation [lo-151. However, 
these experiments and numerical calculations are focused on forced convection, namely the inertia 
driven flow, not the natural one. 

Beyond a critical Rayleigh number, buoyancy driven flow in enclosures has turbulent character- 
istics, depending on the aspect ratio. The core effect on the boundary layers and the dominant 
buoyancy force disable an exact solution for such a flow. 

The enclosure modeled in this study represents a zone heated by means of solar radiation (Fig. 1). 
The system is called the “passive system with a Trombe wall” [16]. The solar radiation is absorbed 
by the glass plate, usually a double glazed one, installed on the south face of the zone. The wall, 
named “Trombe wall”, has been constructed just behind the glass plate. The zone is heated via 
conduction heat transfer through the Trombe wall and convection through the ventilation holes 
on it. Thus, the zone may be considered as an enclosure having two openings on the same side, 
where the magnitudes of the aspect ratio and Rayleigh number are one and 2 x lo”-6 x lOlo, 
respectively. The upper opening is the hot air inlet and the lower one is the outlet of the air flow 
cooled in the enclosure. Turbulence is either produced or destructed inside the zone, depending on 
the dominant buoyancy force, temperature stratification and the wall effect. A detailed definition 
of this mechanism is present in Refs [17, 181. 

Since viscous effects are dominant somewhere in the zone due to the low level of turbulence, there 
is a lack of appropriate turbulent model in the literature for such a system. Most of the turbulence 
models developed in the past were for the solution of isothermal forced flows. Developments in 
modeling the natural turbulent convection have also been accelerated, as environmental aspects, 
such as diffusion of pollutants, have been popular in the last decade [19-221. The attempt to solve 
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Fig. 1. Schematic diagram of the passive system heated by means of the Trombe wall. 



UYGUR and ECiRfCAN: NATURAL TURBULENT FLOW 501 

the flows which have low Reynolds number begins with Ref. [23], which is followed with several 
ones [24]. Reviews of the models in the vicinity of the wall and for the case of low Reynolds number 
flows are present in Refs [20] and [21]. 

Unfortunately, these models are not universal, and it is almost decided that a turbulence model 
should be problem dependent and valid for only similar cases [22]. 

In the present study, a modified turbulence model has been developed to solve the natural 
convective flow in a zone heated passively with a Trombe wall. The model and the code solving 
the governing equations may be applied to similar structures. Another goal of this work is to 
improve the computational convergence and decrease the computer time. 

2. FORMULATION 

The continuity, momentum, and energy equations governing the flow in this geometry are, 
respectively: 

a(ui) =. 

p ax; (1) 

Importing the Boussinessq approximation, the body force appearing in equation (2) is represented 
by buoyancy. 

According to the eddy viscosity and eddy diffusivity approximations [22], the Reynolds stresses 
and turbulent heat fluxes are defined as: 

- v,ar 
-qT’=-- 

ct axi (5) 

where 
k2 

v,=f,c,-. 
6 

3. TURBULENCE MODEL 

The origin of the modified model is the k-c one [22]. In this model, the differential equations 
for the turbulent kinetic energy and the dissipation of this energy in general indices form are: 

where P, is the shear stress production, 

p =_uuav, 
k ’ J dXj 

and Gk is the buoyancy production term, 

G, = -gJu, T ‘. 

(9) 

(10) 
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The source terms, D and E, where 
2 

(11) 

are added to use the Dirichlet boundary condition for dissipation of the turbulent kinetic energy 
for computational reasons [24]. In this study, they are not included due to the justifications below: 

(0 

(ii) 

In the case of using D, instead of the equation for the dissipation of kinetic energy itself, 
the differential equation for the dissipation variable C = .S + D is solved [24]. It sounds more 
physical to solve the differential equation for the dissipation of kinetic energy rather than 
the one for the dissipation variable. The computational advantage of using the Dirichlet 
boundary condition is compensated by the model developed here; and the gradient of 
dissipation is taken as zero. 
The source term E is included by the authors of Ref. [24] to represent the change of 
dissipation with respect to the distance to the wall. In the case of importing E, this change 
accelerates more than that of the kinetic energy of turbulence. Thus, the source term depends 
on grid dimensions strongly. 

A wide discussion on these terms is present in Ref. [18]. Boundary conditions, coefficients, and the 
constants used in the modified model developed here are summarized in Table 1. 

The functionf, representing the effect of molecular viscosity on shear stress does not depend on 
the grid dimension and location. In low Reynolds number k-c turbulent models, the function f, 
is used in order to decrease the kinetic energy of turbulence in the vicinity of the wall by increasing 
the dissipation. However, this duty is held by the function f,. So, in this model, the function f, 
is taken as unity. The function f2, on the other hand, consists of the effect of low Reynolds number 
on the destruction term in the dissipation equation [equation (8)]; and it is imported from the Jones 
and Launder’s model [23]. 

The characteristics of the new model, including the modifications defined above, will be called 
the “standard approximation” further in the text because the flux definitions have been used by 
means of the eddy viscosity/diffusivity approximation [equations (5) and (6)]. Otherwise, instead 
of the standard turbulent flux approximation, the Daly Harlow approximation [25] is used for the 
definition of the fluctuation part of the temperature. 

Thus, the turbulent component of temperature is defined also in terms of velocity gradients: 

k-arp 
-~=C~-uiUk-. 

t ax, (13) 

Here, c+ is called the Daly Harlow constant. To make this coefficient compatible with the eddy 
diffusivity approximation, it is taken as equal to 3/2 of ~,,/a~. 

This new definition is imported into the buoyancy production/destruction term and energy 
equation. Thus, the following definitions are obtained for the buoyancy production/destruction 
term and the diffusion term of the energy equation: 

Table 1. Coefficients, functions and boundary conditions of the modified model 

5 c<, cc2 CC3 Ok UC 01 04 

0.9 1.44 1.92 2.0 1.0 1.3 0.9 0.6 ~~ 
f, fi f2 cwll k wall Re, ~~ 

e-3410 +Fcci, 1.0 1.0 -0.3e-ReS g = 0.0 k,,,, = 0.0 p k’ 
pc 

(14) 
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Table 2. Variable dependent and independent source terms of the governing equations imported 
in this study 

4 S,, /Volume &/Volume 

u, 
a2u ~n-v-l 

-g+(a+&)g+(P+r,)~+--, 
P n-1 -~ 

1 I at 

k p”-‘k”-’ 
P(&c+Gd+at _ p2kp"-' 

cLAx- at 

P"_' -__ 
at 

(15) 

The rest of the additional terms in the energy equation due to this approximation are added to 
the source terms (Table 2). 

4. NUMERICAL PROCEDURE 

The numerical solution consists of discretization by a finite difference method [26] and an 
iterative solution included by the code developed in this study. The general form of the discretized 
differential equations is: 

a$& = X:af4;+ s”, (16) 

where 

a$ = Xaf - S#. (17) 

The variable independent and dependent source terms, S,, and S,, of the governing equations 
are listed in Table 2, and the grid distribution is illustrated in Fig. 2. The staggered grids, namely, 
the vectorial dependent variables and the scalar ones being inserted on the control volumes and the 
grid points, respectively [26], are generated in such a way that the dimensions of the control volumes 
are very tiny near the walls and become coarser towards the core region. In the code, the PLDS, 
power law differencing scheme for the convection terms, and SIMPLE, semi-implicit pressure 
linkage method for the pressure correction have been used. 

The dependent variables are under relaxed according to the following three assumptions. 
For U, V, k, t, T and C: 

for pressure; 

P=P*+a,P’ (1% 

for stress production, buoyancy production, turbulent viscosity and density; 

A=fl-‘+a(l\“-A”-‘). (20) 

In equation (19), P* and P ’ are, respectively, the incorrected and corrected pressures. 
After trying a series of values for the under relaxation factors, it is agreed on the values listed 

in Table 3 to realize optimum convergence and computer time. 
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Fig. 2. Grid distribution inside the enclosure under investigation. 

Table 3. Under relaxation factors imported in the study for optimum convergence and 
computer time for two-dimensional case 

I! V P k fi T pk Gk & P 

0.5 0.5 0.6 0.5 0.5 0.8 0.8 1.0 1.0 I.0 

5. APPLICATION 

The modified model has been applied to the flows studied widely in the literature. Figures 3 and 4 
illustrate, respectively, the turbulent kinetic energy change along the enclosure width in a tall 
enclosure and in the vicinity of the wall. The results from past solutions have been compared with 
the ones obtained in this study, and it is concluded that the model is valid for tall enclosures. 

The procedure of the general calculation of the convective flow in a zone heated with a Trombe 
wall consists of the following steps: 

(9 

(ii) 

(iii) 

(iv) 

Evaluation of the meteorological data for the location of the passively heated zone to obtain 
the radiation amounts and temperature values on the double glazed plate. 
Prediction of the turbulent flow field in the gap between the double glazed plate and the 
Trombe wall. 
Modeling the flow in the Trombe wall, which is made of a porous material, by means of 
the governing equations of laminar flow combined with Darcy’s Law [27]. 
Executing the main part of the work by solving the modified turbulence model to predict 
the velocity and temperature fields inside the zone by means of both the standard and Daly 
Harlow approximations. 
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Fig. 3. Change of turbulent kinetic energy along the enclosure width in a tall enclosure: (a) result of the 
model developed in this study; (b) results of the models in literature [19]. 

In the third step, the natural convective flow field inside the porous Trombe wall is solved by the 
developed code, canceling the terms related to turbulence. The governing equations are given in 
Ref. [27], and its application in the present study is summarized in the Appendix. 

Boundary conditions of the flow inside the zone are: 

Vertical walls 

Vi = 0, T = const., 
k = 0, aclay = 0. 
Horizontal walls 

vi= 0, aqax = 0, 
k = 0, aclax = 0. 
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Fig. 4. Change of turbulent kinetic energy in the vicinity of the wall: (a) result of the model developed 
in this study; (b) results of the models in literature [20]. 

Upper opening, i.e. air inlet 

At lower opening, i.e. air outlet, gradients of all dependent variables are constant. 

6. RESULTS AND DISCUSSION 

Both the standard and the Daly Harlow approximations of the model have been applied to the 
enclosures and they have been compared. Since the Daly Harlow approximation assumed in 
the modified model developed here consists of the non-isotropy of only the scalar quantities 
and non-isotropy of the velocity fluctuations is more important than that of the scalar ones in a 
tall enclosure, no difference has been found between the two approximations for a tall enclosure 
investigation. However, for a square enclosure, for the passively heated zone illustrated in Fig. 1, 
the Daly Harlow approximation represents the secondary flows at the lower cold corner and the 
unstable stratification better than the standard one (Figs 5 and 6). For the turbulent flows in which 
the buoyancy force is dominant, as in a passively heated zone, non-isotropy of the temperature 
fluctuations affects the flow field too much. 

Especially, the secondary flows between the inlet air stream and the ceiling cause a greater 
difference between the two approximations near the ceiling [Fig. 7(a)]. Also, near the floor, due to 
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the fluid outlet and the secondary flows at the lower cold corner, a great difference appears between 
the Daly Harlow and standard approximations [Fig. 7(b)]. Because turbulence is very low at the 
core region the two approximations coincide [Fig. 7(c)]. Meanwhile, another noticeable aspect of 
the turbulent motion in such an enclosure is that the turbulence is greater near the cold wall. The 
reason for this inequality is unstable stratification and two-dimensional heat transfer. So, the effect 
of molecular viscosity near the floor in the vicinity of the cold wall is to delay (Fig. 8). Since the 
warm air stays at the upper parts of the room, the turbulent viscosity near the ceiling is high at 
every section. The ratio of turbulent viscosity to the molecular one decreases towards the, core 
region, and the viscous sub-layer gets thicker near the floor at the sections away from the cold wall. 
Hot air entering the zone through the upper hole cools at a small distance from the cold wall and 
causes a disturbance. This situation was illustrated in Figs 5 and 6. Thus, it is concluded that both 
the secondary flows and the unstable stratification are obtained more clearly by the Daly Harlow 
approximation. 

Also, the flow field in the gap between the double glazed plate and the Trombe wall has been 
predicted by the Daly Harlow approximation (Fig. 9). The circulation at the down part of the 
enclosure illustrated in this figure is due to the cooled air coming from the room through the 
lower opening. The warmed air flow leaving the gap through the upper hole causes sharp velocity 
changes. 
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Fig. 6(a)- caption opposite. 
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(b) 

Fig. 6. Temperature contours in the passively heated zone with a Trombe wall: (a) Standard approxi- 
mation; (b) Daly Harlow approximation. 
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Fig. 7. Change of turbulence kinetic energy in the passively heated zone with a Trombe wall: (a) near the 
ceiling; (b) near the floor; (c) at the midheight. 
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Fig. 8. Change of turbulent viscosity in the passively heated zone with a Trombe wall: (a) near the Trombe 
wall; (b) at the centre; (c) near the cold wall. 
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Fig. 9. Flow field between the double glazed plate and the Trombe wall: (a) velocity vectors; 
(b) temperature contours. 
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Due to the terms added to the energy equation [equation (15)], the Daly Harlow approximation 
also supplies a rapid convergence which is hard to obtain in calculation of non-isothermal turbulent 
flows. However, using this approximation for only the definition of the scalar quantities is not 
enough. Also, non-isotropy of the vectoral fluctuations should be taken into consideration to 
obtain more clear representations of the secondary flows, and a hybrid model, including the 
non-isotropy of the Reynolds stresses in certain parts of the flow domain, should be developed. 
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APPENDIX 

Modeling the Convective Flow in Porous Trombe Wall 

To model the flow inside the Trombe wall, both the brick structure and the orientation of the holes on the wall have been 
taken into consideration (Fig. Al). Using the criteria in Ref. [3]; 



0.89 

UYGUR and ECiRfCAN: NATURAL TURBULENT FLOW 

I--------l4 
Fig. Al. Brick structure of the Trombe wall. 
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Fig. A2. Flow field inside the Trombe wall between the ventilation holes: (a) velocity vectors; 
(b) temperature contours. 
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where U and K’ are, respectively, the horizontal velocity in the porous media and permeability, it has been concluded that 
the flow inside the wall is laminar. 

Permeability is defined in terms of porosity as: 

a%’ 

K’=(l -(0)2’ (A21 

Porosity is the sum of the surface porosity, 0.2 for the material of the Trombe wall, and the ratio of the void space to 
the solid space. Thus: 

cp= 20a2L 
__ + 0.2. 
V roll* 

The terms a and I appearing in equations (A2) and (A3) are the dimensions of the holes on the brick (Fig. Al). 
The governing equations of the laminar flow in fluid media have been combined with the Darcy’s Law as the following 

equations [27]: 

646) 

(A7) 

where U and V are velocity components in the x and y directions. 
The thermal conductivity, k, is calculated with the assumption that the heat is transferred via the fluid and porous media, 

in series. 
The dynamic viscosity, p’, is assumed as equal for the fluid and the porous media [27]. 
Equations (A4)-(A7) have been solved simultaneously, and the convective flow field inside the Trombe wall has been 

obtained as illustrated in Fig. A2. 


