8.3 m The Energy Balance
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» Energy Balance

8.3.1 General Considerations

Because the flow in a tube is completely enclosed, an energy balance may be
applied to determine how the mean temperature 7,,,(x) varies with position along
the tube and how the total convection heat transfer g.,,, is related to the differ-
ence in temperatures at the tube inlet and outlet. Consider the tube flow of Fig-
ure 8.6. Fluid moves at a constant flow rate 7, and convection heat transfer
occurs at the inner surface. Typically, fluid kinetic and potential energy
changes, as well as energy transfer by conduction in the axial direction, are neg-
ligible. Hence if no shaft work is done by the fluid as it moves through the tube,
the only significant effects will be those associated with thermal energy
changes and with flow work. Flow work is performed to move fluid through a
control surface [5, 6] and, per unit mass of fluid, may be expressed as the prod-
uct of the fluid pressure p and specific volume v (v = 1/p).

Applying conservation of energy, Equation 1.11a, to the differential control
volume of Figure 8.6 and recalling the definition of the mean temperature,
Equation 8.25, we obtain
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FIGURE 8.6 Control volume for internal flow in a tube.
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dqeony = d (¢, Ty T PV)

That is, the rate of convection heat transfer to the fluid must equal the rale
the fluid thermal energy increases plus the net rate at which work is done i
the fluid through the control volume. If the fluid is assumed to be an id
(pv =RT,, ¢, = G + R)and ¢, is assumed to be constant, Equation 8.35 red

dqconv = ’th dTm

This expression may also be used to a good approximation for incompress
uids. In this case ¢, = Cp and since v is very small, d(pv) is generally m
than d(c,T,,)." Accordingly, Equation 8.36 again follows from Equation 8.2

A special form of Equation 8.36 relates to conditions for the entire
particular, integrating from the tube inlet i to the outlet o, it follows that

Geonv = me (Tm.o 5 Tm,i)

where geony 18 the total tube heat transfer rate. This simple overall enef
ance relates three important thermal variables (Gconvs T, Tr)- It 15 0
expression that applies irrespective of the nature of the surface thermal 6
flow conditions.

Equation 8.36 may be cast in a convenient form by expressing thes
convection heat transfer to the differential element as dqeony = 4P dx W

is the surface perimeter (P = D for a circular tube). Substituting from
tion 8.28, it follows that =

"
dln _4F _ P yr,-1,
dx mc, mc,
This expression is an extremely useful result, from which the axial variat
T, may be determined. If T > Ty heat is transferred to the fluid a
increases with x; if 7, < T, the opposite is true. ,
The manner in which quantities on the right-hand side of Equatior
vary with x should be noted. Although P may vary with x, most commonl
a constant (a tube of constant cross-sectional area). Hence the quantity (F
is a constant. In the fully developed region, the convection coefficient hi
constant, although it varies with x in the entrance region (Figure 8.5). Fi
although T, may be constant, T,, must always vary with x (except for thel
case of no heat transfer, T, =1y
The solution to Equation 8.38 for T,,(x) depends on the surface thermd
dition. Recall that the two special cases of interest are constant surface hea
and constant surface temperature. It is common to find one of these cond
existing to a reasonable approximation.

8.3.2 Constant Surface Heat Flux

For constant surface heat flux we first note that it is a simple matter {0 ¢ed

4

the total heat transfer rat€ geonv- Since ¢ is independent of x, it follows that

IThe only exception arises when the pressure gradient is extremely large. This situation ¢
when 11 is very large and/or A, is very small (see Problem 8.10).




