

CR1000 Measurement and
Control System

1/08

C o p y r i g h t © 2 0 0 0 - 2 0 0 8
C a m p b e l l S c i e n t i f i c , I n c .

Warranty and Assistance
The CR1000 MEASUREMENT AND CONTROL SYSTEM is warranted
by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and
workmanship under normal use and service for thirty-six (36) months from
date of shipment unless specified otherwise. Batteries have no warranty.
CAMPBELL SCIENTIFIC, INC.'s obligation under this warranty is limited to
repairing or replacing (at CAMPBELL SCIENTIFIC, INC.'s option) defective
products. The customer shall assume all costs of removing, reinstalling, and
shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL
SCIENTIFIC, INC. will return such products by surface carrier prepaid. This
warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products
which have been subjected to modification, misuse, neglect, accidents of
nature, or shipping damage. This warranty is in lieu of all other warranties,
expressed or implied, including warranties of merchantability or fitness for a
particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special,
indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following
contact information is for US and International customers residing in countries
served by Campbell Scientific, Inc. directly. Affiliate companies handle
repairs for customers within their territories. Please visit
www.campbellsci.com to determine which Campbell Scientific company
serves your country. To obtain a Returned Materials Authorization (RMA),
contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an
applications engineer determines the nature of the problem, an RMA number
will be issued. Please write this number clearly on the outside of the shipping
container. CAMPBELL SCIENTIFIC's shipping address is:

 CAMPBELL SCIENTIFIC, INC.
 RMA#_____
 815 West 1800 North
 Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.

i

CR1000 Table of Contents
PDF viewers note: These page numbers refer to the printed version of this document. Use
the Adobe Acrobat® bookmarks tab for links to specific sections.

1. Introduction ...1-1

2. Quickstart Tutorial ..2-1
2.1 Primer - CR1000 Data Acquisition .. 2-1

2.1.1 Components of a Data Acquisition System 2-1
2.1.1.1 Sensors .. 2-1
2.1.1.2 Datalogger... 2-1
2.1.1.3 Data Retrieval ... 2-1

2.1.2 CR1000 Mounting... 2-2
2.1.3 Wiring Panel ... 2-2
2.1.4 Battery Backup.. 2-2
2.1.5 Power Supply .. 2-2
2.1.6 Analog Sensors ... 2-4
2.1.7 Bridge Sensors .. 2-6
2.1.8 Pulse Sensors... 2-7
2.1.9 Digital I/O Ports .. 2-7
2.1.10 RS-232 Sensors ... 2-8

2.2 Hands-on Exercise – Measuring a Thermocouple................................ 2-9
2.2.1 Connections to the CR1000 .. 2-9
2.2.2 PC200W Software... 2-10

2.2.2.1 Programming with Short Cut... 2-10
2.2.2.2 Connecting to the Datalogger .. 2-15
2.2.2.3 Synchronizing the Clocks.. 2-16
2.2.2.4 Sending the Program ... 2-16
2.2.2.5 Monitoring Data Tables... 2-16
2.2.2.6 Collecting Data.. 2-16
2.2.2.7 Viewing Data... 2-17

3. Overview ..3-1
3.1 CR1000 Overview.. 3-1

3.1.1 Sensor Support .. 3-2
3.1.2 Input / Output Interface: The Wiring Panel................................. 3-2

3.1.2.1 Measurement Inputs .. 3-2
3.1.2.2 Voltage Outputs .. 3-3
3.1.2.3 Grounding Terminals .. 3-4
3.1.2.4 Power Terminals ... 3-4
3.1.2.5 Communications Ports .. 3-5

3.1.3 Power Requirements ... 3-6
3.1.4 Programming: Firmware and User Programs.............................. 3-6

3.1.4.1 Firmware: OS and Settings ... 3-6
3.1.4.2 User Programming .. 3-7

3.1.5 Memory and Data Storage .. 3-7
3.1.6 Communications ... 3-8

3.1.6.1 PakBus .. 3-8
3.1.6.2 Modbus ... 3-8
3.1.6.3 DNP3 Communication.. 3-9
3.1.6.4 Keyboard Display ... 3-9

CR1000 Table of Contents

ii

3.1.7 Security.. 3-10
3.1.8 Care and Maintenance ... 3-10

3.1.8.1 Protection from Water ... 3-10
3.1.8.2 Protection from Voltage Transients................................. 3-11
3.1.8.3 Calibration... 3-11
3.1.8.4 Internal Battery.. 3-11

3.2 PC Support Software .. 3-11
3.3 Specifications.. 3-13

4. Sensor Support .. 4-1
4.1 Powering Sensors ... 4-1

4.1.1 Switched Precision (-2500 to +2500 mV)................................... 4-1
4.1.2 Continuous Regulated (5 Volt) ... 4-1
4.1.3 Continuous Unregulated (Nominal 12 Volt) 4-2

4.1.4 Switched Unregulated (Nominal 12 Volt) ... 4-2
4.2 Voltage Measurement... 4-2

4.2.1 Measurement Sequence ... 4-3
4.2.2 Voltage Range ... 4-4
4.2.3 Offset Voltage Compensation ... 4-5

4.2.3.1 Input and Excitation Reversal (RevDiff, RevEx = True) .. 4-6
4.2.3.2 Ground Reference Offset Voltage (MeasOff = True)........ 4-7
4.2.3.3 Background Calibration (RevDiff, RevEx, MeasOff

= False) ... 4-7
4.2.4 Measurements Requiring AC Excitation..................................... 4-7
4.2.5 Integration ... 4-8

4.2.5.1 AC Power Line Noise Rejection.. 4-8
4.2.6 Signal Settling Time.. 4-10

4.2.6.1 Minimizing Settling Errors .. 4-11
4.2.6.2 Measuring the Necessary Settling Time 4-11

4.2.7 Self-Calibration ... 4-13
4.3 Bridge Resistance Measurements ... 4-16

4.3.1 Strain Calculations .. 4-19
4.4 Thermocouple Measurements... 4-21

4.4.1 Error Analysis ... 4-21
4.4.1.1 Panel Temperature ... 4-22
4.4.1.2 Thermocouple Limits of Error ... 4-24
4.4.1.3 Accuracy of Thermocouple Voltage Measurement 4-25
4.4.1.4 Noise on Voltage Measurement....................................... 4-26
4.4.1.5 Thermocouple Polynomial: Voltage to Temperature...... 4-26
4.4.1.6 Reference Junction Compensation: Temperature to

Voltage.. 4-27
4.4.1.7 Error Summary .. 4-28
4.4.1.8 Use of External Reference Junction................................. 4-28

4.5 Pulse Count Measurement .. 4-29
4.5.1 Pulse Input Channels P1 and P2.. 4-30

4.5.1.1 High-frequency Pulse .. 4-31
4.5.1.2 Low-Level AC... 4-32
4.5.1.3 Switch Closure... 4-32

4.5.2 Digital I/O Ports for Pulse Counting ... 4-32
4.6 Period Averaging Measurements.. 4-33
4.7 SDI-12 Measurements .. 4-34
4.8 RS-232 Measurements.. 4-34
4.9 Field Calibration of Linear Sensor.. 4-34

CR1000 Table of Contents

iii

5. Measurement and Control Peripherals5-1
5.1 Analog Input Expansion ... 5-1
5.2 Pulse Input Expansion Modules ... 5-1
5.3 Serial Input Expansion Modules... 5-1
5.4 Control Output.. 5-1

5.4.1 Binary Control .. 5-2
5.4.1.1 Digital I/O Ports .. 5-2
5.4.1.2 Switched 12 V Control.. 5-2
5.4.1.3 Relays and Relay Drivers.. 5-2
5.4.1.4 Component Built Relays ... 5-2

5.5 Analog Control / Output Devices ... 5-3
5.6 Other Peripherals.. 5-3

5.6.1 TIMs.. 5-3
5.6.2 Vibrating Wire .. 5-4
5.6.3 Low-level AC.. 5-4

6. CR1000 Power Supply ..6-1
6.1 Power Requirement .. 6-1
6.2 Calculating Power Consumption .. 6-1
6.3 Campbell Scientific Power Supplies .. 6-1
6.4 Battery Connection... 6-1
6.5 Vehicle Power Connections ... 6-2

7. Grounding ..7-1
7.1 ESD Protection ... 7-1
7.2 Common Mode Range.. 7-3
7.3 Single-Ended Measurement Reference .. 7-4
7.4 Ground Potential Differences ... 7-4
7.4.1 Soil Temperature Thermocouple ... 7-4
7.4.2 External Signal Conditioner .. 7-5
7.5 Ground Looping in Ionic Measurements.. 7-5

8. CR1000 Configuration ..8-1
8.1 DevConfig .. 8-1
8.2 Sending the Operating System ... 8-2

8.2.1 Sending OS with DevConfig .. 8-2
8.2.2 Sending OS to Remote CR1000 ... 8-4
8.2.3 Sending OS Using CF Card .. 8-4

8.3 Settings via DevConfig... 8-4
8.3.1 Deployment Tab ... 8-7

8.3.1.1 Datalogger Sub-Tab .. 8-7
8.3.1.2 Ports Settings Sub-Tab.. 8-8
8.3.1.3 Advanced Sub-Tab.. 8-9

8.3.2 Logger Control Tab .. 8-10
8.4 Settings via Terminal Emulator.. 8-11

9. CR1000 Programming...9-1
9.1 Inserting Comments into Program.. 9-1
9.2 Uploading CR1000 Programs... 9-1

CR1000 Table of Contents

iv

9.3 Writing CR1000 Programs ... 9-1
9.3.1 Short Cut Editor and Program Generator.................................... 9-2
9.3.2 CRBASIC Editor... 9-2
9.3.3 Transformer ... 9-3

9.4 Numerical Formats ... 9-3
9.5 Structure.. 9-4
9.6 Declarations .. 9-6

9.6.1 Variables.. 9-6
9.6.1.1 Arrays.. 9-6
9.6.1.2 Dimensions.. 9-7
9.6.1.3 Data Types... 9-7
9.6.1.4 Data Type Operational Detail.. 9-9

9.6.2 Constants ... 9-10
9.6.3 Flags .. 9-11

9.7 Data Tables ... 9-11
9.7.1 Data Tables.. 9-13

9.7.1.1 DataTable() and EndTable() .. 9-14
9.7.1.2 DataInterval()... 9-14
9.7.1.3 Output Processing Instructions .. 9-15

9.8 Subroutines ... 9-16
9.9 Program Timing: Main Scan... 9-16
9.10 Program Timing: Slow Sequence Scans ... 9-17
9.11 Program Execution and Task Priority... 9-18

9.11.1 Pipeline Mode.. 9-18
9.11.2 Sequential Mode.. 9-19

9.12 Instructions ... 9-20
9.12.1 Measurement and Data Storage Processing............................. 9-20
9.12.2 Parameter Types .. 9-20
9.12.3 Names in Parameters ... 9-21
9.12.4 Expressions in Parameters... 9-21
9.12.5 Arrays of Multipliers and Offsets.. 9-21

9.13 Expressions... 9-22
9.13.1 Floating Point Arithmetic .. 9-22
9.13.2 Mathematical Operations... 9-23
9.13.3 Expressions with Numeric Data Types 9-23

9.13.3.1 Boolean from FLOAT or LONG 9-23
9.13.3.2 FLOAT from LONG or Boolean 9-24
9.13.3.3 LONG from FLOAT or Boolean 9-24
9.13.3.4 Integers in Expressions .. 9-24
9.13.3.5 Constants Conversion .. 9-25

9.13.4 Logical Expressions .. 9-25
9.13.5 String Expressions... 9-27

9.14 Program Access to Data Tables .. 9-28

10. CRBASIC Programming Instructions 10-1
10.1 Program Declarations ... 10-1
10.2 Data Table Declarations.. 10-3

10.2.1 Data Table Modifiers .. 10-3
10.2.2 On-Line Data Destinations.. 10-3
10.2.3 Data Storage Output Processing.. 10-4

10.2.3.1 Single-Source .. 10-4
10.2.3.2 Multiple-Source... 10-5

10.2.4 Histograms .. 10-6
10.3 Single Execution at Compile .. 10-6

CR1000 Table of Contents

v

10.4 Program Control Instructions ... 10-7
10.4.1 Common Controls ... 10-7
10.4.2 Advanced Controls.. 10-9

10.5 Measurement Instructions .. 10-10
10.5.1 Diagnostics.. 10-10
10.5.2 Voltage.. 10-10
10.5.3 Thermocouples.. 10-11
10.5.4 Bridge Measurements.. 10-11
10.5.5 Excitation .. 10-12
10.5.6 Pulse.. 10-12
10.5.7 Digital I/O ... 10-12
10.5.8 SDI-12... 10-13
10.5.9 Specific Sensors .. 10-14
10.5.10 Peripheral Device Support .. 10-15

10.6 Processing and Math Instructions... 10-16
10.6.1 Mathematical Operators .. 10-16
10.6.2 Logical Operators.. 10-18
10.6.3 Trigonometric Functions... 10-18

10.6.3.1 Derived Functions ... 10-18
10.6.3.2 Intrinsic Functions ... 10-19

10.6.4 Arithmetic Functions... 10-20
10.6.5 Integrated Processing .. 10-22
10.6.6 Spatial Processing ... 10-22
10.6.7 Other Functions... 10-23

10.7 String Functions ... 10-24
10.7.1 String Operations .. 10-24
10.7.2 String Commands.. 10-24

10.8 Clock Functions.. 10-26
10.9 Voice Modem Instructions ... 10-27
10.10 Custom Keyboard and Display Menus... 10-28
10.11 Serial Input / Output ... 10-29
10.12 Peer-to-Peer PakBus Communications... 10-30
10.13 Variable Management .. 10-34
10.14 File Management .. 10-34
10.15 Data Table Access and Management.. 10-35
10.16 Information Services .. 10-37
10.17 Modem Control .. 10-38
10.18 SCADA .. 10-39
10.19 Calibration Functions ... 10-39
10.20 Satellite Systems Programming.. 10-40

10.20.1 Argos... 10-40
10.20.2 GOES .. 10-41
10.20.3 OMNISAT .. 10-41
10.20.4 INMARSAT-C.. 10-42

11. Programming Resource Library11-1
11.1 Field Calibration of Linear Sensors (FieldCal) 11-1

11.1.1 CAL Files ... 11-1
11.1.2 CRBASIC Programming .. 11-2
11.1.3 Calibration Wizard Overview... 11-2
11.1.4 Manual Calibration Overview .. 11-2

11.1.4.1 Single-point Calibrations (zero or offset)...................... 11-3
11.1.4.2 Two-point Calibrations (multiplier / gain) 11-3

CR1000 Table of Contents

vi

11.1.5 FieldCal() Demonstration Programs.. 11-3
11.1.5.1 Zero (Option 0) .. 11-3
11.1.5.2 Offset (Option 1).. 11-5
11.1.5.3 Two Point Slope and Offset (Option 2) 11-6
11.1.5.4 Two Point Slope Only (Option 3).................................. 11-8

11.1.6 FieldCalStrain() Demonstration Program.............................. 11-10
11.1.6.1 Quarter bridge Shunt (Option 13) 11-13
11.1.6.2 Quarter bridge Zero (Option 10).................................. 11-13

11.2 Information Services... 11-14
11.2.1 PakBus Over TCP/IP and Callback 11-15
11.2.2 HTTP Web Server ... 11-15
11.2.3 FTP Server... 11-18
11.2.4 FTP Client ... 11-18
11.2.5 Telnet... 11-19
11.2.6 SNMP.. 11-19
11.2.7 Ping ... 11-19
11.2.8 Micro-Serial Server ... 11-19
11.2.9 Modbus TCP/IP... 11-19
11.2.10 DHCP .. 11-19
11.2.11 DNS... 11-19
11.2.12 SMTP .. 11-20

11.3 SDI-12 Sensor Support ... 11-20
11.3.1 SDI-12 Transparent Mode... 11-20
11.3.2 SDI-12 Command Basics .. 11-21
11.3.3 Addressing... 11-21

11.3.3.1 Address Query Command.. 11-22
11.3.3.2 Change Address Command ... 11-22
11.3.3.3 Send Identification Command 11-22

11.3.4 Making Measurements .. 11-22
11.3.4.1 Start Measurement Command...................................... 11-23
11.3.4.2 Start Concurrent Measurement Command................... 11-23
11.3.4.3 Aborting a Measurement Command............................ 11-24

11.3.5 Obtaining Measurement Values .. 11-24
11.3.5.1 Send Data Command ... 11-24
11.3.5.2 Continuous Measurements Command 11-24

11.3.6 SDI-12 Power Considerations ... 11-26
11.4 Subroutines ... 11-27
11.5 Wind Vector ... 11-27

11.5.1 OutputOpt Parameters ... 11-27
11.5.2 Wind Vector Processing .. 11-28
11.5.2.1 Measured Raw Data ... 11-29

11.5.2.2 Calculations ... 11-29
11.6 CR1000KD Custom Menus .. 11-32
11.7 Conditional Compilation... 11-32
11.8 Serial Input ... 11-34
11.9 Callback .. 11-34
11.10 TrigVar and Output Trigger Conditions 11-34
11.11 Programming for Control.. 11-36
11.12 NSEC Data Type.. 11-36

11.12.1 NSEC Application... 11-36
11.12.2 NSEC Options ... 11-36
11.12.3 Example NSEC Programming... 11-37

CR1000 Table of Contents

vii

12. Memory and Data Storage12-1

12.1 Internal SRAM ... 12-4
12.2 CompactFlash® (CF) .. 12-4
12.3 Memory Drives... 12-5

12.3.1 CPU: ... 12-5
12.3.2 CRD: (CF card memory) .. 12-5
12.3.3 USR: ... 12-5

12.4 Memory Conservation .. 12-6
12.5 Memory Reset .. 12-6
12.6 File Control .. 12-6

12.6.1 File Attributes ... 12-8
12.6.2 CF Power-up... 12-9

13. Telecommunications and Data Retrieval13-1
13.1 Hardware and Carrier Signal .. 13-1
13.2 Protocols... 13-2
13.3 Initiating Telecommunications ... 13-2
13.4 Data Retrieval... 13-3
13.4.1 Via Telecommunications... 13-3
13.4.2 Via CF Card... 13-3
13.4.3 Data Format on Computer ... 13-3

14. PakBus Overview ..14-1
14.1 PakBus Addresses .. 14-1
14.2 Nodes: Leaf Nodes and Routers ... 14-1
14.3 Router and Leaf Node Configuration ... 14-2
14.4 Linking Nodes: Neighbor Discovery.. 14-3

14.4.1 Hello-message (two-way exchange) 14-3
14.4.2 Beacon (one-way broadcast)... 14-3
14.4.3 Hello-request (one-way broadcast) ... 14-3
14.4.4 Neighbor Lists .. 14-3
14.4.5 Adjusting Links .. 14-3
14.4.6 Maintaining Links... 14-4

14.5 Troubleshooting.. 14-4
14.5.1 Link Integrity .. 14-4
14.5.2 Ping... 14-5
14.5.3 Traffic Flow.. 14-5

14.6 LoggerNet Device Map Configuration... 14-6

15. Alternate Telecoms Resource Library.................15-1
15.1 DNP3.. 15-1
15.2 Modbus... 15-2

15.2.1 Overview .. 15-2
15.2.2 Terminology ... 15-3

15.2.2.1 Glossary of Terms... 15-3
15.2.3 CR1000 Programming for Modbus... 15-4

15.2.3.1 Declarations... 15-4
15.2.3.2 Datalogger Commands .. 15-4
15.2.3.3 Addressing (ModbusAddr) .. 15-5
15.2.3.4 Supported Function Codes (Function)........................... 15-5
15.2.3.5 Reading Inverse Format Registers (MoveBytes)........... 15-5

CR1000 Table of Contents

viii

15.2.4 Troubleshooting... 15-6
15.2.5 Modbus over IP with NL115... 15-6
15.2.6 Modbus Slave over IP with NL100 ... 15-6

15.2.6.1 Configuring the NL100.. 15-6
15.2.6.2 Configuring the CR1000.. 15-10

Section 16. Support Software.................................... 16-1
16.1 Short Cut... 16-1
16.2 PC200W.. 16-1
16.3 Visual Weather ... 16-1
16.4 PC400 ... 16-1
16.5 LoggerNet Suite.. 16-1
16.6 PDA Software... 16-3

17. CR1000KD: Using the Keyboard Display 17-1
17.1 Data Display ... 17-3

17.1.1 Real Time Tables .. 17-4
17.1.2 Real Time Custom .. 17-5
17.1.3 Final Storage Tables.. 17-6

17.2 Run/Stop Program .. 17-7
17.3 File Display... 17-8

17.3.1 File: Edit ... 17-9
17.4 PCCard Display .. 17-10
17.5 Ports and Status .. 17-11
17.6 Settings ... 17-12

17.6.1 Set Time / Date ... 17-13
17.6.2 PakBus Settings .. 17-13
17.6.3 Configure Display... 17-13

18. Care and Maintenance ... 18-1
18.1 Temperature Range... 18-1
18.2 Moisture Protection .. 18-1
18.3 Enclosures... 18-1
18.4 Replacing the Internal Battery .. 18-2

19. Troubleshooting ... 19-1
19.1 Programming .. 19-1

19.1.1 Debugging Resources ... 19-1
19.1.2 Program does not Compile.. 19-2
19.1.3 Program Compiles / Does Not Run Correctly......................... 19-2
19.1.4 NAN and ±INF ... 19-3

19.1.4.1 Measurements and NAN ... 19-3
19.1.4.2 Floating Point Math, NAN, and ±INF........................... 19-3
19.1.4.3 Data Types, NAN, and ±INF... 19-4

19.2 Communications ... 19-5
19.2.1 RS-232... 19-5
19.2.2 Communicating with Multiple PC Programs 19-5
19.3 Memory Errors ... 19-5

19.4 Power Supply.. 19-6
19.4.1 Overview ... 19-6
19.4.2 Troubleshooting at a Glance.. 19-6

CR1000 Table of Contents

ix

19.4.3 Diagnosis and Fix Procedures ... 19-7
19.4.3.1 Battery Voltage Test ... 19-7
19.4.3.2 Charging Circuit Test — Solar Panel............................ 19-8
19.4.3.3 Charging Circuit Test — Transformer 962H19-9
396H19.4.3.4 Adjusting Charging Circuit Voltage 963H19-10

Appendices

A. Glossary... A-1
A.1 Terms A-1
A.2 Concepts.. A-5

A.2.1 Accuracy, Precision, and Resolution... A-5

B. Status Table... B-1

C. Serial Port Pin Outs .. C-1

D. ASCII Table .. D-1

Index to Sections .. Index-1

Figures
397H2.1-1. CR1000 Wiring Panel... 964H2-3
398H2.1-2. Single-ended and Differential Input Channels.................................. 965H2-4
399H2.1-3. Single-ended and Differential Analog Sensor Wiring 966H2-5
400H2.1-4. Half and Full Bridge Wiring... 967H2-6
401H2.1-5. Pulse Input Types ... 968H2-7
402H2.1-6. Anemometer Wired to Pulse Channel #1 ... 969H2-7
403H2.1-7. Control and Monitoring of a Device using Digital I/O Ports............ 970H2-8
404H2.1-8. Use of RS-232 and Digital I/O when Reading RS-232 Devices....... 971H2-8
405H2.2-1. Power and RS-232 Connections ... 972H2-9
406H2.2-2. PC200W Setup/Connect Tab.. 973H2-10
407H2.2-3. Short Cut “1. New/Open” Page .. 974H2-11
408H2.2-4. Short Cut Sensors Page.. 975H2-13
409H2.2-5. Short Cut Wiring Diagram ... 976H2-13
410H2.2-6. Short Cut Outputs Page .. 977H2-14
411H2.2-7. Short Cut Finish Page... 978H2-15
412H2.2-8. Using PC200W Connect Button to Establish Communication

Link... 979H2-15
413H2.2-9. PC200W Monitor Values Tab .. 980H2-16
414H2.2-10. PC200W Collect Data Tab ... 981H2-17
415H2.2-11. PC200W View Data Utility .. 982H2-18
416H3.1-1. Principal Features of CR1000 Data Acquisition Systems 983H3-1
417H3.1-2. CR1000KD Custom Menu Example .. 984H3-9
418H4.2-1. Full and ½ Cycle Integration Methods for AC Power Line Noise

Rejection ... 985H4-9
419H4.2-2. Settling Time for Pressure Transducer ... 986H4-13
420H4.3-1. Circuits Used with Bridge Measurement Instructions 987H4-18
421H4.4-1. Panel Temperature Errors... 988H4-22
422H4.4-2. Panel Temperature Gradients during -55 to 80 °C Change 989H4-23
423H4.4-3. Panel Temperature Gradients during 80 to 25 °C Change.............. 990H4-24
424H4.4-4. Diagram of Junction Box.. 991H4-29

CR1000 Table of Contents

x

4.5-1. Schematic of a Pulse Sensor on a CR1000 4-30
4.5-2. Pulse Input Types ... 4-31
4.5-3. Amplitude reduction of pulse-count waveform before and after

1 μs time constant filter. .. 4-31
4.6-1. Input conditioning circuit for low-level and high level period

averaging. .. 4-33
5.4-1. Relay Driver Circuit with Relay ... 5-3
5.4-2. Power Switching without Relay.. 5-3
6.5-1. Connecting CR1000 to Vehicle Power Supply................................. 6-2
7.1-1. Schematic of CR1000 Grounds .. 7-2
7.5-1. Model of Resistive Sensor with Ground Loop.................................. 7-5
8.1-1. DevConfig CR1000 Facility ... 8-2
8.2-1. DevConfig OS download window for CR1000. 8-3
8.2-2. Dialog Box Confirming a Successful OS Download........................ 8-3
8.3-1. DevConfig Settings Editor.. 8-5
8.3-2. Summary of CR1000 Configuration ... 8-6
8.3-3. DevConfig Deployment Tab... 8-7
8.3-4. DevConfig Deployment | Ports Settings Tab 8-8
8.3-5. DevConfig Deployment | Advanced Tab.. 8-9
8.3-6. DevConfig Logger Control Tab.. 8-10
8.4-1. DevConfig Terminal Emulator Tab .. 8-11
11.1-1. Quarter bridge strain gage schematic with RC resistor shunt

locations shown. .. 11-11
11.1-2. Strain gage shunt calibration started. ... 11-13
11.1-3. Strain gage shunt calibration finished.. 11-13
11.1-4. Starting zero procedure. .. 11-14
11.1-5. Zero procedure finished. ... 11-14
11.2-1. CR1000 Default Home Page... 11-15
11.2-2. Home Page Created using WebPageBegin() Instruction 11-17
11.2-3. Monitor Web Page Generated By Datalogger Program.............. 11-18
11.3-1. Entering SDI-12 Transparent Mode through LoggerNet

Terminal Emulator .. 11-21
11.5-1. Input Sample Vectors.. 11-29
11.5-2. Mean Wind Vector.. 11-30
11.5-3. Standard Deviation of Direction ... 11-31
12.6-1. Summary of the Effect of CF Data Options on CR1000 Data. 12-9
14.2-1. PakBus Network Addressing. PakBus addresses are shown in

parentheses after each datalogger in the network. 14-2
14.6-1. Flat Map.. 14-6
14.6-2. Tree Map... 14-6
15.2-1. NL100/NL105 Settings... 15-7
15.2-2. PakBus Settings .. 15-7
15.2-3. RS-485 Settings .. 15-8
15.2-4. RS-232 Settings .. 15-8
15.2-5. CS I/O Settings ... 15-9
15.2-6. Tlink Settings.. 15-9
18.4-1. CR1000 with wiring panel .. 18-3
18.4-2. Loosen thumbscrew to remove CR1000 canister from

wiring panel... 18-3
18.4-3. Pull edge with thumbscrew away from wiring panel. 18-4
18.4-4. Remove nuts to disassemble canister.. 18-4
18.4-5. Remove and replace battery.. 18-5

CR1000 Table of Contents

xi

Tables
4.1-1. Current Sourcing Limits ... 4-2
4.2-1. CRBASIC Parameters Varying Measurement Sequence and

Timing... 4-3
4.2-2. Analog Voltage Input Ranges with Options for Open Input

Detect (OID) and Pull into Common Mode (PCM). 4-4
4.2-3. Analog Measurement Offset Voltage Compensation 4-6
4.2-4. CRBASIC Measurement Settling Time and Integration Codes........ 4-8
4.2-5. AC Noise Rejection Integration on Voltage Ranges Except

mV5000 and mV2500... 4-8
4.2-6. AC Noise Rejection Integration on Voltage Ranges mV5000

and mV2500.. 4-10
4.2-7. CRBASIC Measurement Settling Times .. 4-11
4.2-8. First Six Values of Settling Time Data... 4-13
4.2-9. Values Generated by the Calibrate() Instruction 4-15
4.3-1. Strain Equations.. 4-20
4.4-1. Limits of Error for Thermocouple Wire (Reference Junction

at 0oC) ... 4-24
4.4-2. Voltage Range for Maximum Thermocouple Resolution

(with reference temperature at 20oC)...................................... 4-26
4.4-3. Limits of Error on CR1000 Thermocouple Polynomials

(Relative to NIST Standards) .. 4-27
4.4-4. Reference Temperature Compensation Range and Polynomial

Error Relative to NIST Standards ... 4-27
4.4-5. Example of Errors in Thermocouple Temperature 4-28
9.4-1. Formats for Entering Numbers in CRBASIC................................... 9-3
9.5-1. CRBASIC Program Structure... 9-4
9.6-1. Data Types.. 9-8
9.6-2. Resolution and Range Limits of FP2 Data 9-9
9.6-3. FP2 Decimal Location.. 9-9
9.7-1. Typical Data Table ... 9-12
9.11-1. Task Processes.. 9-18
9.11-2. Pipeline Mode Task Priorities .. 9-19
9.12-1. Rules for Names ... 9-21
9.13-1. Binary Conditions of TRUE and FALSE 9-26
9.14-1. Abbreviations of Names of Data Processes.................................. 9-29
10.6-1. Derived Trigonometric Functions... 10-19
11.3-1. The SDI-12 basic command / response set. Courtesy SDI-12

Support Group... 11-25
11.3-2. Example Power Usage Profile for a Network of SDI-12

Probes.. 11-26
11.5-1. OutputOpt Options ... 11-27
11.10-1. Data Generated by Code in EXAMPLE 11.10-1...................... 11-35
12.6-1. File Control Functions .. 12-7
12.6-2. CR1000 File Attributes... 12-8
12.6-3. Powerup.ini Commands.. 12-11
13.1-1. CR1000 Telecommunications Options... 13-1
14.3-1. PakBus Leaf Node and Router Devices.. 14-2
14.5-1. PakBus Link Performance Gage... 14-5
15.2-1. Modbus to Campbell Scientific Equivalents 15-3
15.2-2. Linkage between CR1000 Ports, Flags, and Variables and

Modbus Registers.. 15-4
16.5-1. LoggerNet Products that Include the LoggerNet Server............... 16-2

CR1000 Table of Contents

xii

16.5-2. LoggerNet Clients (require, but do not include, the
LoggerNet Server)... 16-2

18.4-1. CR1000 Lithium Battery Specifications 18-2
19.1-1. Math Expressions and CRBASIC Results 19-4
19.1-2. Variable and FS Data Types with NAN and ±INF 19-4
B-1. Common Uses of the Status Table ... B-1
B-2. Status fields and descriptions ... B-2
C-1. CS I/O Pin Description... C-1
C-2. Computer RS-232 Pin-Out... C-2

Examples
4.2-1. CRBASIC Code: Measuring Settling Time 4-12
4.3-1. CRBASIC Code: 4 Wire Full Bridge Measurement and

Processing ... 4-19
9.1-1. CRBASIC Code: Inserting Comments ... 9-1
9.4-1. CRBASIC Code: Program to load binary information into a

single variable. .. 9-3
9.5-1. CRBASIC Code: Proper Program Structure 9-5
9.6-1. CRBASIC Code: Using a variable array in calculations................... 9-6
9.6-2. CRBASIC Code: Data Type Declarations .. 9-7
9.6-3. CRBASIC Code: Using the Const Declaration............................... 9-11
9.6-4. CRBASIC Code: Flag Declaration and Use 9-11
9.7-1. CRBASIC Code: Definition and Use of a Data Table 9-13
9.7-2. CRBASIC Code: Use of the Disable Variable................................ 9-15
9.9-1. CRBASIC Code: BeginProg / Scan / NextScan / EndProg Syntax 9-16
9.9-2. CRBASIC Code: Scan Syntax .. 9-17
9.12-1. CRBASIC Code: Measurement Instruction Syntax...................... 9-20
9.12-2. CRBASIC Code: Use of Expressions in Parameters 9-21
9.12-3. CRBASIC Code: Use of Arrays as Multipliers and Offsets 9-22
9.13-1. CRBASIC Code: Use of variable arrays to save code space. 9-23
9.13-2. CRBASIC Code: Conversion of FLOAT / LONG to Boolean 9-24
9.13-3. CRBASIC Code: Evaluation of Integers 9-24
9.13-4. CRBASIC Code: Constants to LONGs or FLOATs..................... 9-25
9.13-5. Logical Expression Examples... 9-27
9.13-6. CRBASIC Code: String and Variable Concatenation................... 9-27
10.6-1. CRBASIC Code: Using bit shift operators. 10-17
10.12-1. CRBASIC Code: Programming for retries in PakBus

peer-to-peer communications. ... 10-31
11.1-1. FieldCal zeroing demonstration program. 11-4
11.1-2. FieldCal offset demonstration program. 11-6
11.1-3. FieldCal multiplier and offset demonstration program. 11-8
11.1-4. FieldCal multiplier only demonstration program.......................... 11-9
11.1-5. FieldCalStrain() calibration demonstration................................. 11-12
11.2-1. CRBASIC Code. HTML.. 11-16
11.7-1. Use of Conditional Compile Instructions #If, #ElseIf, #Else

and #EndIf ... 11-33
11.10-1. Using TrigVar to Trigger Data Storage 11-35
11.12-1. CRBASIC Code: Using NSEC data type on a 1 element array.11-37
11.12-2. CRBASIC Code: Using NSEC data type on a 2 element array.11-37
11.12-3. CRBASIC Code: Using NSEC data type with a 7 element

time array. ... 11-38
12.6-1. Powerup.ini code. ... 12-11
12.6-2. Run Program on Power-up.. 12-12
12.6-3. Format the USR: drive. ... 12-12
12.6-4. Send OS on Power-up... 12-12

CR1000 Table of Contents

xiii

12.6-5. Run Program from CRD: drive... 12-12
12.6-6. Run Program Always, Erase CF data. .. 12-12
12.6-7. Run Program Now, Erase CF data.. 12-12
15.1-1. CRBASIC Code. Implementation of DNP3. 15-1
15.2-1. CRBASIC Code Example: Modbus Slave.................................. 15-10
19.1-1. Using NAN in an Expressions.. 19-3

CR1000 Table of Contents

xiv

1-1

Section 1. Introduction
Whether in extreme cold in Antarctica, scorching heat in Death Valley, salt
spray from the Pacific, micro-gravity in space, or the harsh environment of
your office, Campbell Scientific dataloggers support research and operations
all over the world. Our customers work a broad spectrum of applications, from
those more complex than any of us imagined, to those simpler than any of us
thought practical. The limits of the CR1000 are defined by our customers. Our
intent with the CR1000 manual is to guide you to the tools you need to explore
the limits of your application.

You can take advantage of the CR1000’s powerful analog and digital
measurement features by spending a few minutes working through the
Quickstart Tutorial of Section 2 and the Overview of Section 3. For more
demanding applications, the remainder of the manual and other Campbell
Scientific publications are available. If you are programming with CRBASIC,
you will need the extensive Help available with the CRBASIC Editor software.
Formal CR1000 training is also available from Campbell Scientific.

This manual is organized to take you progressively deeper into the complexity
of CR1000 function. You may not find it necessary to progress beyond the
Quick Start Tutorial or Overview sections. Section 2 Quick Start Tutorial
gives a cursory view of CR1000 data acquisition and walks you through a first
attempt at data acquisition. Section 3 Overview reviews salient topics, which
are covered in-depth in subsequent sections and Appendices.

More in-depth study requires other Campbell Scientific publications, most of
which are available on-line at www.campbellsci.com. Generally, if a particular
feature of the CR1000 requires a peripheral hardware device, more information
will be available in the manual written for that device. Manuals for Campbell
Scientific products are available at www.campbellsci.com.

If you are unable to find the information you need, please contact us at
435-753-2342 and speak with an applications engineer. Or you can email us at
support@campbellsci.com.

Section 1. Introduction

1-2

This is a blank page.

2-1

Section 2. Quickstart Tutorial
Quickstart tutorial gives a cursory look at CR1000 data acquisition.

2.1 Primer - CR1000 Data Acquisition
Data acquisition with the CR1000 is the result of a step wise procedure
involving the use of electronic sensor technology, the CR1000, a
telecommunications link, and PC datalogger support software.

2.1.1 Components of a Data Acquisition System
CR1000s are only one part of a data acquisition system. To get good data,
suitable sensors and a reliable data retrieval method are required. A failure in
any part of the system can lead to “bad” data or no data.

2.1.1.1 Sensors
Suitable sensors accurately and precisely transduce environmental change into
measurable electrical properties by outputting a voltage, changing resistance,
outputting pulses, or changing states.

Read more! Accuracy, precision and resolution are discussed in Section
C.2.1.

2.1.1.2 Datalogger
CR1000s can measure almost any sensor with an electrical response.

CR1000s measure electrical signals and convert the measurement to
engineering units, perform calculations and reduce data to statistical values.
Every measurement does not need to be stored. The CR1000 will store data in
memory awaiting transfer to the PC via external storage devices or
telecommunications.

2.1.1.3 Data Retrieval
The main objective of a data acquisition system is to provide data files on a PC.

Data is copied, not moved, from the CR1000 to the PC. Multiple users may
have access to the same CR1000 without compromising data or coordinating
data collection activities.

RS-232 and CS I/O ports are integrated with the CR1000 wiring panel to
facilitate data collection.

Section 2. Quickstart Tutorial

2-2

On-site serial communications are preferred if the datalogger is near the PC,
and the PC can dedicate a serial (COM) port for the datalogger. On-site
methods such as direct serial connection or infrared link are also used when the
user visits a remote site with a laptop or PDA.

In contrast, telecommunications provide remote access and the ability to
discover problems early with minimum data loss. A variety of devices, and
combinations of devices, such as telephone modems, radios, satellite
transceivers, and TCP/IP network modems are available for the most
demanding applications.

2.1.2 CR1000 Mounting
The CR1000 module integrates electronics with a sealed stainless steel
clamshell, making it economical, small, and very rugged.

2.1.3 Wiring Panel
The CR1000 module connects to the wiring panel, which provides terminals
for connecting sensors, power and communications devices. The wiring panel
also incorporates surge protection against phenomena such as lightning. See
FIGURE 2.1-1.

2.1.4 Battery Backup
A lithium battery backs up the CR1000 clock, program, and memory if it loses
power.

2.1.5 Power Supply
The CR1000 can be powered by a nominal 12 volt DC source through the
green “POWER IN” connector. Acceptable power range is 9.6 to 16 VDC.

Section 2. Quickstart Tutorial

2-3

G 12V

11109SE 15 1613 1412

SE 1 2 3 4 5 6 7 8

SW
-1

2

5V 12
V

12
V

12VG

DC ONLY
CAUTION

PERIPHERAL PORT

C
5

HL
DIFF

H EX
2

H LH LL

C
4

G G G G C
1

C
2

C
3

G G

RS-232

SN:

LUG

CS I/O

EX
3

G GROUND

C
6

C
7

C
8

H
1 2 3 4

5 6 7 8

L
DIFF

H EX
1

H HH HL

POWER IN

WIRING PANEL

P2P1 GG G

CR1000 MADE IN USA

SDM

Tx
COM1

Rx Tx Rx Tx Rx Tx Rx
COM2 COM3 COM4POWER OUT

FIGURE 2.1-1. CR1000 Wiring Panel

Power In

RS-232

CS I/O

Switched Voltage
Excitation (EX or
Vx)
Bridge Measurements Analog Inputs

Voltage
Thermocouple
Bridge Measurements
Period/Average

Ground Lug

Pulse Inputs
Switch Closure
Frequency

 Analog Ground

Switched
12 Volts

12 V SDM Connections Control I/O Power Ground (G) Peripheral Port 5 V

Section 2. Quickstart Tutorial

2-4

2.1.6 Analog Sensors
Analog sensors output continuous voltages that vary with the phenomena
measured.

Analog sensors connect to analog terminals. Analog terminals are configured
as single-ended (measured with respect to ground) or differential (high input
measured with respect to the low input of a channel pair (FIGURE 2.1-3)).

Analog channels are configured individually as 8 differential or 16 single
ended Channels (FIGURE 2.1-2).

Differential Single-Ended
Channel Channel
1H 1
1L 2

2H 3
2L 4

3H 5
3L 6

4H 7
4L 8

5H 9
5L 10

6H 11
6L 12

7H 13
7L 14

8H 15
8L 16

FIGURE 2.1-2. Single-ended and Differential Input Channels

Section 2. Quickstart Tutorial

2-5

Sensor Wired to Single-Ended Channel #2

H
L

H
L

1
2

1
2

3
4

D
IF

F

S
E

+

-

Sensor

Sensor Wired to Differential Channel #1

H
L

H
L

1
2

1
2

3
4

D
IF

F

S
E

+

-
Sensor

FIGURE 2.1-3. Single-ended and Differential Analog Sensor Wiring

Section 2. Quickstart Tutorial

2-6

2.1.7 Bridge Sensors
Bridge sensors change resistance with respect to environmental change.
Resistance is determined by measuring the difference between the excitation
voltage supplied to the bridge by the CR1000 and the voltage detected by the
CR1000 returning from the bridge. The CR1000 supplies a precise excitation
voltage via excitation terminals. Return voltage is measured on analog
terminals (FIGURE 2.1-4).

Potentiometer from Wind Vane Wired to Excitation Channel #1

H
L

E
X

1
4

7
8

D
IF

F

S
E

P

FIGURE 2.1-4. Half and Full Bridge Wiring

EX1

L

H

Section 2. Quickstart Tutorial

2-7

2.1.8 Pulse Sensors
The CR1000 can measure switch closures, low-lever AC signals (waveform
breaks zero volts), or voltage pulses (±20 VDC) on pulse channels (FIGURE
2.1-5 and FIGURE 2.1-6).

Period averaging sensors are connected to single-ended analog channels.

FIGURE 2.1-5. Pulse Input Types
E

X
1

P
1

P
2

Sensor

FIGURE 2.1-6. Anemometer Wired to Pulse Channel #1

2.1.9 Digital I/O Ports
The CR1000 has 8 Digital I/O ports selectable, under program control, as
binary inputs or control outputs. These ports have multiple function capability
including: edge timing, device driven interrupts, switch closure pulse counting,
high frequency pulse counting, asynchronous communications, SDI-12
communications, SDM communications, and as shown in FIGURE 2.1-7,
turning on/off devices and monitoring whether the device is operating or not.

Section 2. Quickstart Tutorial

2-8

Digital I/O Ports Used to Control/Monitor Pump

110 VAC

Pump

ACL1
Line

Monitor

C1

G

C2

G

CR10

 C1 - Used as input to monitor pump status.

 C2 - Used as output to switch power to a pump via a solid state relay.

FIGURE 2.1-7. Control and Monitoring of a Device
using Digital I/O Ports

2.1.10 RS-232 Sensors
RS-232 sensors can be connected to either the 9-pin RS-232 port or digital I/O
port pairs.. FIGURE 2.1-8 illustrates use of RS-232 or digital I/O ports.

FIGURE 2.1-8. Use of RS-232 and Digital I/O
when Reading RS-232 Devices

Section 2. Quickstart Tutorial

2-9

2.2 Hands-on Exercise – Measuring a
Thermocouple

This tutorial is a stepwise procedure for configuring a CR1000 to make a
simple thermocouple measurement and send the resulting data to a PC.
Discussions include programming, real-time data monitoring, collecting data,
and viewing data. Principles discussed are applicable to all CR1000
applications.

2.2.1 Connections to the CR1000
Connect power and RS-232 cables to the CR1000 as illustrated in FIGURE
2.2-1.

Compatible power supplies are discussed in Section 6 Power Supply. When
connecting power to the CR1000, first remove the green power connector from
the wiring panel. Insert the positive 12 V lead into the terminal labeled “12V”,
and the ground lead into the terminal labeled “G”. Confirm the polarity of the
wires before re-inserting the connector.

Connect the serial cable supplied with the CR1000 between the port labeled
“RS-232” on the CR1000 and the serial (COM) port on the computer. For
computers with USB ports, a USB-to-serial adaptor is required.

FIGURE 2.2-1. Power and RS-232 Connections

RS-232 Connection

On/Off Switch

Green 12 VDC
Power Connection
(Observe Polarity!)

Section 2. Quickstart Tutorial

2-10

2.2.2 PC200W Software
Obtain and install PC200W. PC200W is available on the Campbell Scientific
Resource CD or at www.campbellsci.com.

When PC200W is first opened, the EZSetup Wizard is launched. Click the
Next button and follow the prompts to select the CR1000, the COM port on
the computer that will be used for communications, 115200 baud, and PakBus
Address 1. When prompted with the option to Test Communications, click
the Finish button.

If a datalogger was not added with the Wizard, click the + (add) button to
invoke the Wizard.

After exiting the EZSetup wizard, the Clock / Program tab is presented, as
shown in FIGURE 2.2-2. Current Datalogger Profile, Clock, and Datalogger
Program features are integrated into this tab. Tabs to the right are used to
select Monitor Data and Collect Data options. Buttons to the right of the tabs
are used to run Split, View, and Short Cut applications.

FIGURE 2.2-2. PC200W Setup/Connect Tab

2.2.2.1 Programming with Short Cut
To assist with this exercise, a type T thermocouple is shipped with the CR1000
(packaged with the screwdriver). The thermocouple is a pair of 5-inch wires
with blue / red insulation, soldered together at one end.

Section 2. Quickstart Tutorial

2-11

Historical Note:

In the space race era, a field thermocouple measurement was a complicated and
cumbersome process incorporating thermocouple wire with three junctions, a
micro-volt meter, a vacuum flask filled with an ice slurry, and a thick reference
book. One thermocouple junction connected to the μV meter, another sat in the
vacuum flask, and the third was inserted into the location of the temperature of
interest. When things settled out, the micro-volt meter was read, and the value
looked up in the appropriate table in the reference book to determine the
temperature. Then along came Eric and Evan Campbell. Campbell Scientific
designed the first CR7 datalogger to make thermocouple measurements
without the need of vacuum flasks, third junctions, or reference books. Now,
there’s an idea!

Nowadays, a thermocouple consist of two wires of dissimilar metals, such as
copper and constantan, joined at one end. The joined end is the measurement
junction; the junction that is created when the thermocouple is wired to the
CR1000 is the reference junction.

When the two junctions are at different temperatures, a voltage proportional to
the temperature difference is induced into the wires. The thermocouple
measurement requires the reference junction temperature to calculate the
measurement junction temperature using proprietary algorithms in the CR1000
operating system.

Objective: Program the CR1000 to accomplish the following tasks.

Every one second, measure air temperature in degrees C with a type T
thermocouple and store one-minute average battery voltage, panel temperature,
and thermocouple temperature.

Procedure:

Click on the Short Cut button in the upper right of the PC200W window to
open Short Cut as shown in FIGURE 2.2-3.

FIGURE 2.2-3. Short Cut “1. New/Open” Page

Section 2. Quickstart Tutorial

2-12

Use the Help in conjunction with the steps outlined below:

Step 1: Open a new or existing file.

The first time Short Cut is run, a prompt asks for a choice of
“AC Noise Rejection.” If the CR1000 will be used in the United
States, choose “60 Hz”; many other countries use “50 Hz” power
mains systems. A second prompt asks for a choice of “Sensor
Support.” Choose “Campbell Scientific, Inc.”

On the “1. New/Open” page, click [New Program]. Use the drop-down list
box that appears to select CR1000. Click [OK]. Enter a 1 second Scan
Interval and click [OK]. Click on [Next>] to progress to “2. Sensors” page.

Step 2: Select sensors to be measured.

Sensors page is divided into two sections: Available Sensors and Selected
table, as shown in FIGURE 2.2-4. Sensors desired are chosen from the
available sensors tree.

On the Available Sensors tree, open the Sensors folder to show several sub-
folders. Each sub-folder includes a class of sensors. Open the Temperature
sub-folder to display available temperature sensors.

Double click on the Wiring Panel Temperature sensor to add it to the
selected sensors table. Click OK on the next screen to accept the PTemp_C
label.

Double click on the Type T Thermocouple. Change the number of sensors to
add to “1” and click OK. On the next screen, make sure Ptemp_C is selected
for the Reference Temperature Measurement, and click OK to accept the
Temp_C label.

NOTE

Section 2. Quickstart Tutorial

2-13

FIGURE 2.2-4. Short Cut Sensors Page

Click on Wiring Diagram to view the sensor wiring diagram, as shown in
FIGURE 2.2-5. Wire the Type T Thermocouple (provided) to the CR1000 as
shown on the diagram. Click on 3. Outputs to continue with Step 3.

FIGURE 2.2-5. Short Cut Wiring Diagram

Section 2. Quickstart Tutorial

2-14

Step 3: Data Storage Output Processing.

The Outputs page has a list of Selected Sensors to the left, and data storage
Tables to the right as shown in FIGURE 2.2-6. Two Tables, Table1 and
Table2, are available by default. Both Tables have a Store Every field and a
list box to select time units. These are used to set the interval at which data
will be stored.

FIGURE 2.2-6. Short Cut Outputs Page

This exercise calls for one-minute data storage processing, so only one data
table is needed. To remove Table2, click on Table2 tab to activate it, and click
the Delete Table button.

The Table Name field is the name that will be used for the Table in which data
is stored. Change the default name of Table1 to OneMin, and change the
interval to 1 minute.

To add a measurement to data storage Table OneMin, highlight a measurement
under Selected Sensors (Batt_Volt) and click the appropriate processing button
(Average). Select the Batt_Volt, PTemp_C, and Temp_C measurements and
apply Average processing to each to add them to the OneMin Table
measurements.

Click Finish and name the file “Quickstart” to continue with Step 4 and
complete the program.

Step 4: Program Finish.

As shown in FIGURE 2.2-7, any errors the compiler may have detected are
displayed, along with the names of the files that were created. The file
Quickstart.CR1 is the program file that is to be sent to the CR1000.
Quickstart.def is a summary of the sensor wiring and measurement labels.

Section 2. Quickstart Tutorial

2-15

Click the Summary tab and / or Print buttons to view and print the
summaries. Click the X button to exit the Short Cut window.

FIGURE 2.2-7. Short Cut Finish Page

2.2.2.2 Connecting to the Datalogger
From the PC200W Clock / Program tab, click on the Connect button to
establish communications with the CR1000 (FIGURE 2.2-8). When
communications have been established, the text on the button will change to
Disconnect.

FIGURE 2.2-8. Using PC200W Connect Button to
Establish Communication Link

Connect Button

Section 2. Quickstart Tutorial

2-16

2.2.2.3 Synchronizing the Clocks
Click the Set Clock button to synchronize the datalogger’s clock with the
computer’s clock.

2.2.2.4 Sending the Program
Click the Send Program button. Navigate to the C:\CampbellSci\SCWin
folder and select the file QED.CR1 and click the Open button. A progress bar
is displayed, followed by a message that the program was successfully sent.

2.2.2.5 Monitoring Data Tables
The Monitor Data window (FIGURE 2.2-9) is used to display the current
sensor measurement values from the Public Table, and the most recent data
from the OneMin table. After sending a program to the CR1000, a good
practice is to monitor the measurements to ensure they are reasonable.

Click on the Monitor Data tab. The Public table is automatically selected and
displayed. To view the OneMin table, click the Add button, select a cell in
which to place the first value, select the OneMin table, and click the Paste
button.

FIGURE 2.2-9. PC200W Monitor Values Tab

2.2.2.6 Collecting Data
Click on the Collect Data tab (FIGURE 2.2-10). From the Collect Data
window, choose what data to collect, and where to store the collected data.

Click on the OneMin table, with the option New data from datalogger
selected. Click the Collect button and a dialog box appears, prompting for a
file name. Click the Save button to use the default file name
CR1000_OneMin.dat. A progress bar, followed by the message Collection
Complete is displayed.

Section 2. Quickstart Tutorial

2-17

FIGURE 2.2-10. PC200W Collect Data Tab

2.2.2.7 Viewing Data
To view the collected data, click on the View button (located in the upper
right-central portion of the main screen). Options are accessed by using the
menus or by selecting the toolbar icons. Move and hold the mouse over a
toolbar icon for a few seconds for a brief description of that icon's function.

To open a data file, click the Open file icon (FIGURE 2.2-11), and double
click on the file CR1000_OneMin.dat in the PC200W folder. Click the
Expand Tabs icon to display the data in columns with column headings. To
graph thermocouple temperature, click on the data column with the heading
Temp_C, then click the Show Graph, 1 Y axis icon on the toolbar.

Section 2. Quickstart Tutorial

2-18

FIGURE 2.2-11. PC200W View Data Utility

Close the graph and view screens, and close PC200W.

Open file Expand tabs Show graph

3-1

Section 3. Overview
3.1 CR1000 Overview

The CR1000 Datalogger is a precision instrument designed for demanding
low-power measurement applications. CPU, analog and digital inputs, analog
and digital outputs, and memory are controlled by the operating system in
conjunction with the user program. The user program is written with
CRBASIC, a programming language that includes data processing and analysis
routines as well as a standard BASIC instruction set. Campbell Scientific’s
datalogger support software facilitate program generation, editing, data
retrieval, and real-time data monitoring (see Section 13 Support Software).

FIGURE 3.1-1 illustrates principal features of common CR1000-based data
acquisition systems.

FIGURE 3.1-1. Principal Features of CR1000 Data Acquisition Systems

As a simple concept, the CR1000 is a multimeter with memory and
timekeeping. It is one part of a data acquisition system. To acquire quality
data, suitable sensors and reliable telecommunications devices are also
required.

Sensors transduce phenomena into measurable electrical forms, outputting
voltage, current, resistance, pulses, or state changes. The CR1000, sometimes
with the assistance of various peripheral devices, can measure nearly all
electronic sensors.

Section 3. Overview

3-2

The CR1000 measures analog voltage and pulse signals, representing the
magnitudes numerically. Numeric values are scaled to the unit of measure
such as millivolts and pulses, or in user specified engineering units such as
wind direction and wind speed. Measurements can be processed through
calculations or statistical operations and stored in memory awaiting transfer to
a PC via external storage or telecommunications.

The CR1000 has the option of evaluating programmed instructions
sequentially, or in pipeline mode, wherein the CR1000 decides the order of
instruction execution.

3.1.1 Sensor Support
Read more! See Section 4 Sensor Support.

The following sensor types are supported by the CR1000 datalogger:

Analog voltage
Analog current (with a shunt resistor)
Thermocouples
Resistive bridges
Pulse output
Period output
Frequency output
Serial smart sensors
SDI-12 sensors

A library of sensor manuals and application notes are available at
www.campbellsci.com to assist in measuring many sensor types. Consult with
a Campbell Scientific applications engineer for assistance in measuring
unfamiliar sensors.

3.1.2 Input / Output Interface: The Wiring Panel
The wiring panel of the CR1000 is the interface to all CR1000 functions. Most
CR1000 functions are best introduced by reviewing features of the CR1000
wiring panel. FIGURE 2.1-1 illustrates the wiring panel and some CR1000
functions accessed through it.

Read more! Expansion accessories increase the input / output capabilities
of the wiring panel. Read Section 5 Measurement and Control Peripherals
for more information.

3.1.2.1 Measurement Inputs
Measurements require a physical connection with a sensor at an input channel
and CRBASIC programming to instruct the CR1000 how to make, process, and
store the measurement. The CR1000 wiring panel has the following input
channels:

Analog Voltage: 16 channels (Diff 1 - 8 / SE 1 - 16) configurable as 8
differential or 16 single-ended inputs.
• Input voltage range: -5000 mV to +5000 mV.
• Measurement resolution: 0.67 μV to 1333 μV

Section 3. Overview

3-3

Period Average: 16 channels (SE 1 -16)
• Input voltage range: -2500 mV to +2500 mV.
• Maximum frequency: 200 kHz

Technical Note -- Pulse Count vs. Period Average

Pulse count and period average measurements can both be used to measure
sensors that output frequency. Yet pulse count and period average
measurement methods are quite different, resulting in different characteristics
for each type. Pulse count measurements use dedicated counter hardware that is
always monitoring the input signal, even when the datalogger goes to sleep
mode between scans. Period average measurements utilize multiplexed voltage
measurement hardware and so only monitor the input signal during the
execution of a period average instruction. Consequently, pulse count
measurement intervals can generally be made much longer than period average
measurement intervals, which is advantageous if trying to minimize the effects
of low-frequency noise. Pulse count measurements are not appropriate for
sensors that are powered down between scans, whereas period average
measurements work well as they can be placed in the scan so as to execute only
when the sensor is powered up and outputting valid frequency information.

Period average measurements utilize a high-frequency digital clock to measure
time differences between signal transitions, whereas pulse count measurements
simply accumulate the number of counts. As a result, period average
measurements offer much better frequency resolution per measurement
interval, as compared to pulse count measurements. The frequency resolution
of pulse count measurements can be improved by extending the measurement
interval by increasing the scan interval and by averaging.

Pulse: 2 channels (P1 - P2) configurable for counts or frequency of the
following signal types:
• High level 5V square waves
• Switch closures
• Low-level A/C sine waves

Digital I/O: 8 channels (C1 - C8) configurable for serial input, SDM, SDI-12,
state, frequency, pulses.
• C1 - C8: state, frequency and pulse measurements.
• C1 - C3: Synchronous Devices for Measurement (SDM) input /

output.
• C1, C3, C5, C7: SDI-12 input / output.
• C1 - C2, C3 - C4, C5 - C6, C7 - C8: serial communication input /

output.

9-Pin RS-232: 1 port (Computer RS-232) configurable for serial input.

3.1.2.2 Voltage Outputs
The CR1000 supplies precision voltage excitation for resistive measurements
through the following output channels:

Switched Analog Voltage Output (Excitation): 3 channels (Vx/EX1 – Vx/EX3)
for precise voltage excitation ranging from -2500 mV to +2500 mV. Each
channel will source up to 25 mA.

Section 3. Overview

3-4

The CR1000 can be used as a PLC (programmable logic controller). Utilizing
peripheral relays and analog output devices, the CR1000 can manage binary
and variable control devices through the following output channels:

Read more! See Section 5.4 Control Output.

Continuous Analog Voltage Output: available by adding a peripheral analog
output device available from Campbell Scientific..

Digital I/O: 8 channels (C1 - C8) configurable for pulse output duration.

Switched 12 Volts (SW-12): controls (switches on / off) primary battery
voltage under program control for use with external devices, such as
humidity sensors, requiring controlled 12 V. SW-12 can source up to 600
mA.

3.1.2.3 Grounding Terminals
Read more! See Section 7 Grounding.

Proper grounding will lend stability and protection to a data acquisition system.
It is the easiest and least expensive insurance against data loss -- and the most
neglected. The following terminals are provided for connection of sensor and
datalogger grounding:

Signal Grounds: 12 terminals () used as reference for single-ended analog
inputs, pulse inputs, excitation returns, and as a ground for sensor shield
wires. Signal returns for pulse inputs should use terminals located next
to pulse inputs.

Power Grounds: 6 terminals (G) used as returns for 5V, SW12, 12V, and C1-
C8 outputs. Use of G grounds for these outputs minimizes potentially
large current flow through the analog voltage measurement section of the
wiring panel, which can cause single-ended voltage measurement errors.

Ground Lug: 1 terminal (), the large ground lug is used to connect a heavy
gage wire to earth ground. A good earth connection is necessary to secure
the ground potential of the datalogger and shunt transients away from
electronics. Minimum 14 AWG wire is recommended.

3.1.2.4 Power Terminals
Read more! See Section 6 Power Supply.

Power In

Power Supply: One green plug (POWER IN): for connecting power from an
external power source to the CR1000. These are the only terminals used
to input battery power; other 12V terminals and the SW-12 terminal are
output only terminals for supplying power to other devices. Review
power requirements and power supply options in Section 6 CR1000
Power Supply before connecting power.

Section 3. Overview

3-5

Power Out

Peripheral 12 V Power Source: 2 terminals (12V) and associated grounds (G)
supply power to sensors and peripheral devices requiring nominal 12
VDC. This supply may drop as low as 9.6 VDC before datalogger
operation stops. Precautions should be taken to minimize the occurrence
of data from underpowered sensors.

Peripheral 5 V Power Source: 1 terminal (5V) and associated ground (G)
supply power to sensors and peripheral devices requiring regulated 5
VDC.

3.1.2.5 Communications Ports
Read more! See Section 13 Telecommunication and Data Retrieval and
Section 14 PakBus Overview.

The CR1000 is equipped with several communications ports. Communication
ports allow the CR1000 to communicate with other computing devices, such as
a PC, or with other Campbell Scientific dataloggers.

RS-232 communications normally operate well up to a
transmission cable capacitance of 2500 picofarads, or
approximately 50 feet of commonly available serial cable.

9-pin RS-232: 1 DCE port for communicating with a PC through the supplied
serial cable, serial sensors, or through 3rd party serial telecommunications
devices. Acts as a DTE device with a null-modem cable.

Read more! See Appendix B Serial Pin-out

9-pin CS I/O port: 1 port for communicating through Campbell Scientific
telecommunications peripherals.

2-pin RS-232: 4 ports configurable from Control I/O ports for communication
with serial sensors or other Campbell Scientific dataloggers.

Peripheral: 1 port for use with some Campbell Scientific CF memory card
modules and IP network link hardware. See Section 10.2 for CF card
precautions.

The 9-pin RS-232 port is not isolated. “Isolation” means
electrically isolated, often by means of optical (light operated)
isolation components, from the communications node at the
other end of the connection. Optical isolation prevents some
electrical problems such as ground looping, which can cause
significant errors in single-ended measurements. If optical
isolation is required, Campbell Scientific offers the SC32B
Optically Isolated RS-232 Interface as a CR1000 accessory,
which connects to the CS I/O port.

NOTE

NOTE

Section 3. Overview

3-6

3.1.3 Power Requirements
Read more! See Section 6 Power Supply.

The CR1000 operates from a DC power supply with voltage ranging from 9.6
to 16 V, and is internally protected against accidental polarity reversal. The
CR1000 has modest input power requirements. In low power applications, it
can operate for several months on non-rechargeable batteries. Power systems
for longer-term remote applications typically consist of a charging source, a
charge controller, and a rechargeable battery. When AC line power is
available, an AC/AC or AC/DC wall adapter, a charge controller, and a
rechargeable battery can be used to construct a UPS (uninterruptible power
supply). Contact a Campbell Scientific applications engineer for assistance in
acquiring the items necessary to construct a UPS.

Applications requiring higher current requirements, such as satellite or cellular
phone communications, should be evaluated by means of a power budget with
a knowledge of the factors required by a robust power system. Contact a
Campbell Scientific applications engineer if assistance is required in evaluating
power supply requirements.

Common power devices are listed below:

Batteries
Alkaline D-cell - 1.5 V/cell
Rechargeable Lead-Acid battery

Charge Sources
Solar Panels
Wind Generators
AC/AC or AC/DC wall adapters

3.1.4 Programming: Firmware and User Programs
Read more! See Section 8 CR1000 Configuration.

The CR1000 is a highly programmable instrument, adaptable to the most
demanding measurement and telecommunications requirements.

3.1.4.1 Firmware: OS and Settings
Firmware consists of the operating system (OS) and durable configuration
settings. OS and settings remain intact when power is cycled.

Good News! The CR1000 is shipped factory ready with all settings and
firmware necessary to communicate with a PC via RS-232 and to accept and
execute user application programs. OS upgrades are occasionally made
available at www.campbellsci.com.

For more complex applications, some settings may need adjustment.
Adjustments are accomplished with CSI’s DevConfig Software (Section 8.1
DevConfig), CR1000KD Keyboard Display (Section 17 CR1000KD: Using the

Section 3. Overview

3-7

Keyboard Display), or through datalogger support software (see Section 13
Support Software)..

OS files are sent to the CR1000 with DevConfig, through the program Send
button in datalogger support software, or with a CF card. When the OS is sent
via DevConfig, most settings are cleared, whereas, when sent via datalogger
support software, most settings are retained.

3.1.4.2 User Programming
Read more! See Section 9 CR1000 Programming and Section 10
CRBASIC Programming Instructions and CRBASIC help for more
programming assistance.

A CRBASIC program directs the CR1000 how and when sensors are to be
measured, calculations made, and data stored. A program is created on a PC
and sent to the CR1000. The CR1000 can store a number of programs in
memory, but only one program is active at a given time. Three Campbell
Scientific software applications, Short Cut, CRBASIC Editor, and Transformer
Utility create CR1000 programs.

1. Short Cut creates a datalogger program and wiring diagram in four easy
steps. It supports most sensors sold by Campbell Scientific and is
recommended for creating simple programs to measure sensors and store
data.

2. Programs generated by Short Cut are easily imported into CRBASIC
Editor for additional editing. For complex applications, experienced
programmers often create essential measurement and data storage code
with Short Cut, then edit the code with CRBASIC Editor. Note that once a
Short Cut generated program has been edited with CRBASIC Editor, it can
no longer be modified with Short Cut.

3. Transformer utility converts CR10X code to CR1000 code, which can then
be imported into CRBASIC Editor. Because of differences in syntax, not
all CR10X code is fully convertible. Transformer is included with PC400
and LoggerNet software and is typically accessed from Windows Explorer
in C:\Campbellsci\Loggernet or C:\Campbellsci\PC400 folders, or from
Windows Desktop: Start | All Programs | LoggerNet | Utilities |
Transformer.

3.1.5 Memory and Data Storage
Read more! See Section 12 Memory and Data Storage.

The CR1000 has 2 MBytes Flash EEPROM used to store the operating system.
Another 512 K of Flash stores configuration settings. Beginning with CR1000
serial number 11832, 4 MBytes of SRAM are available for program storage
(32K), operating system use, and data storage. The size of available memory is
posted in the status table (Appendix A). Additional data storage is optionally
available by using a Compact Flash card in the CFM100 Compact Flash
Module or NL115 Ethernet Interface and Compact Flash Module.

Program storage memory is usually partitioned as a single drive, CPU:. CC640
camera applications require storage of image files on a USR: virtual drive,
which is partitioned from the CR1000 data storage memory.

Section 3. Overview

3-8

3.1.6 Communications
Read more! See Section 13 Telecommunications and Data Retrieval.

The CR1000 communicates with external devices to receive programs, send
data, or act in concert with a network. The primary communication protocol is
PakBus. Modbus and DNP3 communication protocols are also supported.

3.1.6.1 PakBus
Read more! See Section 14 PakBus Overview.

The CR1000 communicates with Campbell Scientific support software,
telecommunication peripherals, and other dataloggers via PakBus, a proprietary
network communications protocol. PakBus is a protocol similar in concept to
IP (Internet protocol). By using signatured data packets, PakBus increases the
number of communications and networking options available to the CR1000.
Communication can occur via RS-232, CS I/O, or digital I/O ports.

Advantages of PakBus:

• Simultaneous communication between the CR1000 and other devices.

• Peer-to-peer communication — no PC required.

• Other PakBus dataloggers can be used as “sensors” to consolidate all data
into one CR1000.

• Routing - the CR1000 can act as a router, passing on messages intended
for another logger. PakBus supports automatic route detection and
selection.

• Short distance networks with no extra hardware - A CR1000 can talk to
another CR1000 over distances up to 30 feet by connecting transmit,
receive and ground wires between the dataloggers. PC communications
with a PakBus datalogger via the CS I/O port, over phone modem or radio,
can be routed to other PakBus dataloggers.

• Datalogger to datalogger communications - special CRBASIC instructions
simplify transferring data between dataloggers for distributed decision
making or control.

• In a PakBus network, each datalogger is set to a unique address before
installed in the network. Default PakBus address is 1. To communicate
with the CR1000, the datalogger support software (see Section 13) must
know the CR1000’s PakBus address. The PakBus address is changed
using the CR1000KD Keyboard Display, DevConfig software, CR1000
status table, or PakBus Graph software.

3.1.6.2 Modbus
Read more! See Section 15.2 Modbus.

The CR1000 supports Modbus Master and Modbus Slave communication for
inclusion in Modbus SCADA networks.

Section 3. Overview

3-9

3.1.6.3 DNP3 Communication
Read more! See Section 15.1 DNP3.

The CR1000 supports DNP3 Slave communication for inclusion in DNP3
SCADA networks.

3.1.6.4 Keyboard Display
Read more! See Section 17 CR1000KD: Using the Keyboard Display.

The CR1000KD Keyboard Display is a powerful tool for field use. It allows
complete access to most datalogger tables and function, allowing the user to
monitor, make modifications, and troubleshoot a datalogger installation
conveniently and in most weather conditions.

3.1.6.4.1 Custom Menus

Read more! To implement custom menus, see CRBASIC Help for the
DisplayMenu() instruction.

CRBASIC programming in the CR1000 facilitates creation of custom menus
for the CR1000KD Keyboard Display.

FIGURE 3.1-2 shows windows from a simple CR1000KD custom menu
named “DataView”. “DataView” appears as the main menu on the
CR1000KD. DataView has menu item, “Counter”, and submenus
“PanelTemps”, “TCTemps”, and “System Menu”. “Counter” allows selection
of 1 of 4 values. Each submenu displays two values from CR1000 memory.
PanelTemps shows the CR1000 wiring panel temperature at each scan, and the
one minute sample of panel temperature. TCTemps displays two thermocouple
temperatures.

PanelTemps:
Scan |23.4960
Final Stg |23.5000

TCTemps:
TC_Temp_1 |29.4355
TC_Temp_2 |32.3133

Data
Run/Stop Program
File
Ports and Status
Configure, Settings

DataView
PanelTemps >
Counter |0.00000
TCTemps >
System Menu >

FIGURE 3.1-2. CR1000KD Custom Menu Example

Section 3. Overview

3-10

3.1.7 Security
CR1000 applications may include collection of sensitive data, operation of
critical systems, or networks accessible by many individuals. CR1000 security
provides means by which partial or complete lock-out can be accomplished in
the CRBASIC program code.

Up to three levels of security can be set in the datalogger. Level 1 must be set
before Level 2. Level 2 must be set before Level 3. If a level is set to 0, any
level greater than it will also be set to 0 (e.g., if Level 2 is 0, Level 3 is 0).
Valid security codes are 1 through 65535 (0 is no security). Each level must
have a unique code. If security is set to a negative code in the CR1000, a
positive code must be entered to unlock the CR1000. That positive code =
65536 + (negative security code). For example, a security code of -1111 must
be entered as 64425 to unlock the CR1000.

Security can be enabled using DevConfig, the CR1000KD, Status Table, or the
SetSecurity() instruction.

Functions affected by each level of security are:

Level 1: collecting data, setting the clock, and setting variables in the Public
table are unrestricted. Enter level 1 password to change or retrieve the
datalogger program or set variables in the Status table.

Level 2: collecting data is unrestricted. Enter level 2 password to set the clock
or change variables in the public table. Enter level 1 password to change the
datalogger program or non-read-only postings in the status table.

Level 3: Enter level 3 password to collect data. Enter level 2 password to
collect data, set public variable and set the clock. Enter level 1 password to
open all datalogger functions to unrestricted use.

Security can be bypassed at the datalogger using a CR1000KD. Pressing and
holding the "Del" key while powering up a CR1000 will cause it to abort
loading a program and provide a two minute window to either review or
disable security codes in the settings editor (not status table) with the
CR1000KD. CR1000KD security bypass does not allow telecommunications
access without first correcting the security code.

3.1.8 Care and Maintenance
With reasonable care, the CR1000 should give many years of reliable service.

3.1.8.1 Protection from Water
Read more! See Section 18 Care and Maintenance.

The CR1000 and most of its peripherals must be protected from moisture.
Moisture in the electronics will seriously damage, and probably render un-
repairable, the CR1000. Water can come from flooding or sprinkler irrigation,
but most often comes as condensation. Protecting from water is as easy as
placing the CR1000 in a weather tight enclosure with desiccant. The CR1000
is shipped with desiccant to reduce humidity. Desiccant should be changed
periodically. Do not completely seal the enclosure if lead acid batteries are

Section 3. Overview

3-11

present; hydrogen gas generated by the batteries may build up to an explosive
concentration.

3.1.8.2 Protection from Voltage Transients
Read more! See Section 7 Grounding.

The CR1000 must be grounded to minimize the risk of damage by voltage
transients associated with power surges and lightning induced transients. Earth
grounding is required to form a complete circuit for voltage clamping devices
internal to the CR1000.

3.1.8.3 Calibration
Read more! See Section 0 Self-Calibration.

The CR1000 uses an internal voltage reference to routinely calibrate itself. To
maintain electrical specifications, Campbell Scientific recommends factory
recalibration every two years. For calibration services, contact Campbell
Scientific to obtain a Return Materials Authorization (RMA) prior to shipping.

3.1.8.4 Internal Battery

Misuse of the lithium battery or installing it improperly can
cause severe injury. Fire, explosion, and severe burn
hazard! Do not recharge, disassemble, heat above 100°C
(212°F), solder directly to the cell, incinerate, nor expose
contents to water. Dispose of spent lithium batteries
properly.

The CR1000 contains a lithium battery that operates the clock and SRAM
when the CR1000 is not externally powered. In a CR1000 stored at room
temperature, the lithium battery should last approximately 10 years (less at
temperature extremes). In installations where the CR1000 is powered most of
the time, the lithium cell should last much longer. Lithium battery voltage can
be monitored from the CR1000 Status Table. Operating range of the battery is
2.7 to 3.6 VDC. Replace the battery when the voltage is below 2.7 VDC.

3.2 PC Support Software
Read more! See Section 16 Support Software.

Several datalogger support software products for Windows are available.
Software for datalogger setup and simple applications, PC200W and Short Cut,
are available at no cost at www.campbellsci.com. For more complex
programming, telecommunications, networking, and reporting features, full-
featured products are available from Campbell Scientific.

1. PC200W Starter Software is available at no charge at
www.campbellsci.com. It supports a transparent RS-232 connection
between PC and CR1000, and includes Short Cut for creating CR1000
programs. Tools for setting the datalogger clock, sending programs,
monitoring sensors, and on-site viewing and collection of data are also
included.

CAUTION

http://www.campbellsci.com/�
http://www.campbellsci.com/�

Section 3. Overview

3-12

2. PC400 supports a variety of telecommunication options, manual data
collection, and data monitoring displays. Short Cut, CRBASIC Editor,
and Transformer Utility are included for creating CR1000 programs.
PC400 does not support complex communication options, such as phone-
to-RF, PakBus® routing, or scheduled data collection.

3. LoggerNet supports combined telecommunication options, customized
data monitoring displays, and scheduled data collection. It includes Short
Cut, CRBASIC Editor, and Transformer Utility programs for creating
CR1000 programs. It also includes tools for configuring, trouble-shooting,
and managing datalogger networks. LoggerNet Admin and LoggerNet
Remote are also available for more demanding applications.

Section 3. Overview

3-13

3.3 Specifications

Section 3. Overview

3-14

4-1

Section 4. Sensor Support
Several features give the CR1000 the flexibility to measure many sensor types.
Contact a Campbell Scientific applications engineer if assistance is required to
assess sensor compatibility.

4.1 Powering Sensors
Read more! See Section 6 Power Supply.

The CR1000 is a convenient source of power for sensors and peripherals
requiring a 5 or 12 VDC source. It has two continuous 12 V terminals (12V),
one program-controlled switched 12 V terminal (SW-12), and one continuous
5 V terminal (5V). SW-12, 12 V, and 5V terminals limit current internally for
protection against accidental short circuits. Voltage on the 12V and SW-12
terminals will change with the DC supply used to power the CR1000. The 5V
terminal is internally regulated to within ±4%, which is typically not adequate
accuracy for bridge sensor excitation. Measurement of the 5 V terminal
voltage output by the datalogger (by means of jumpering to an analog input)
enables an accurate bridge measurement if the 5 V terminal must be used for
excitation. TABLE 4.1-1 shows the current limits of the 12V and 5V
terminals. Greatly reduced output voltages associated with 12V, SW-12, and
5V due to current limiting may occur if the current limits given in TABLE
4.1-1 are exceeded.

4.1.1 Switched Precision (-2500 to +2500 mV)
Three switched analog output (excitation) terminals (Vx/EX1, Vx/EX2,
Vx/EX3) operate under program control. Check the accuracy specification of
these channels in Section 3.3 to understand their limitations. Specifications are
only applicable for loads not exceeding ±25 mA. CRBASIC instructions that
control excitation channels include:

BrFull()
BrFull6W()
BrHalf()
BrHalf3W()
BrHalf4W()
ExciteV()

Excitation channels can be configured through the RevEx
parameter of bridge instructions to provide a squarewave AC
excitation for use with polarizing bridge sensors.

4.1.2 Continuous Regulated (5 Volt)
The 5 V terminal is regulated and remains near 5 Volts (±4%) so long as the
CR1000 supply voltage remains above 9.6 Volts. The 5 V terminal is not
suitable for resistive bridge sensor excitation.

NOTE

Section 4. Sensor Support

4-2

4.1.3 Continuous Unregulated (Nominal 12 Volt)
Voltage on the 12 V terminals will change with CR1000 supply voltage.

4.1.4 Switched Unregulated (Nominal 12 Volt)
Voltage on the SW-12 terminal will change with CR1000 supply voltage. Two
CRBASIC instructions, SW12() and PortSet(), control the SW-12 terminal.
Each is handled differently by the CR1000.

SW12() is a processing task instruction. Use it when controlling power to
SDI-12 and serial sensors, which use SDI12Recorder() or SerialIn()
instructions respectively. CRBASIC programming using IF THEN constructs
to control SW-12, such as cell phone control, should also use the SW12()
instruction.

PortSet() is a measurement task instruction. Use it when powering analog
input sensors that need to be turned on just prior to measurement.

TABLE 4.1-1. Current Sourcing Limits

Terminals
Vx/EX1, Vx/EX2, Vx/EX3

Current Source Limit
±25 mA Maximum

SW12 < 900 mA @ 20°C
 < 730 mA @ 40°C
 < 650 mA @ 50°C
 < 570 mA @ 60°C
 < 360 mA @ 85°C
12V + SW12 < 3.00 A @ 20°C
 < 2.49 A @ 40°C
 < 2.31 A @ 50°C
 < 2.04 A @ 60°C
 < 1.56 A @ 85°C
5V + CSI/O < 200 mA

4.2 Voltage Measurement
The CR1000 measures single-ended (SE) and / or differential (Diff) voltage
inputs. Single-ended measurements use CRBASIC instruction VoltSE(), which
returns the voltage difference between a single input (x.x mV) and ground (0
mV). Differential measurements use CRBASIC instruction VoltDiff(), which
returns the voltage difference (x.x - y.y) between a high input (x.x mV) and a
low input (y.y mV).

Associated with differential measurements is common-mode voltage, defined
as the average DC voltage common to both the high and low inputs [(VHi +
VLo) / 2] associated with a differential measurement. The CR1000
incorporates a differential instrumentation amplifier on its measurement front-
end. This amplifier processes the difference between the voltage inputs, while
rejecting common-mode signals, as long as the common-mode signals are

Section 4. Sensor Support

4-3

within the ±5000 mV common-mode input range of the amplifier. The
amplifier cannot properly reject common-mode signals that fall outside of the
±5000 mV common-mode input range. See Section 16.2 for more information
on common-mode range.

Two sets of numbers are assigned to analog channels. For
differential measurements, analog channels are numbered 1 - 8.
Each differential channel as two inputs: high (H) and low (L).
For single-ended measurement, analog channels are numbered
1-16.

Sustained voltages in excess of ±16 V input to the analog
channels will damage CR1000 circuitry.

4.2.1 Measurement Sequence
The CR1000 measures analog voltage by integrating the input signal for a fixed
duration and then holding the integrated value during the successive
approximation analog-to-digital (A/D) conversion. The CR1000 can make and
store measurements from up to 8 differential or 13 single-ended channels at the
minimum scan rate of 10 ms (100 Hz) using the fastest available voltage
measurements. The maximum conversion rate is 2700 per second for
measurements made on a single channel.

The timing of CR1000 measurements is precisely controlled. The
measurement schedule is determined at compile time and loaded into memory.
This schedule sets interrupts that drive the measurement task.

Using two different voltage measurement instructions with the same voltage
range takes the same measurement time as using one instruction with two
repetitions.

Historical Lesson: This is not the case with legacy CR10X, 21X, CR23X, and
CR7(X) dataloggers. Using multiple measurement “reps” in these dataloggers
reduced overall measurement time.

Several parameters in CRBASIC voltage measurement instructions VoltDiff()
and VoltSE() vary the sequence and timing of measurements. TABLE 4.2-1
lists these parameters.

TABLE 4.2-1. CRBASIC Parameters Varying Measurement Sequence
and Timing

CRBASIC Parameter Description
MeasOfs Correct ground offset on single-ended measurements.
RevDiff Reverse high and low differential inputs.
SettlingTime Sensor input settling time.
Integ Duration of input signal integration.
RevEx Reverse polarity of excitation voltage.

NOTE

NOTE

Section 4. Sensor Support

4-4

4.2.2 Voltage Range
In general, a voltage measurement should use the smallest fixed input range
that will accommodate the full scale output of the sensor being measured. This
results in the best measurement accuracy and resolution. The CR1000 has six
fixed input ranges for voltage measurements, along with an autorange option
that enables the CR1000 to automatically determine the appropriate input
voltage range for a given measurement. TABLE 4.2-2 describes the CR1000
input voltage range options along with the associated alphanumeric range
codes.

TABLE 4.2-2. Analog Voltage Input Ranges with Options for Open Input
Detect (OID) and Pull into Common Mode (PCM).

Range Code Description
mV50001 measures voltages between +5000 mV
mV25002 measures voltages between +2500 mV
mV2502 measures voltages between +250 mV
mV252 measures voltages between +25 mV
mV7_52 measures voltages between +7.5 mV
mV2_52 measures voltages between +2.5 mV
AutoRange3 datalogger determines the most suitable range
1 Append with “C” to enable OID/PCM and set excitation to full-scale DAC (~2700 mV)
2 Append with “C” to enable OID/PCM
3 Append with “C” to enable OID/PCM on ranges ≤ +250 mV, PCM on ranges > +250 mV

Fixed Voltage Ranges

As listed in TABLE 4.2-2, the CR1000 has six fixed input ranges for voltage
measurement. An approximately 9% range overhead exists on all input voltage
ranges. For example, over-range on the ±2500 mV input range occurs at
approximately +2725 mV and –2725 mV. The CR1000 indicates a
measurement over-range by returning a NAN (Not-A-Number) for the
measurement.

AutoRange

For signals that do not fluctuate too rapidly, AutoRange allows the CR1000 to
automatically choose the voltage range to use. AutoRange makes two
measurements. The first measurement determines the range to use, and is made
with the 250 μs integration on the ±5000 mV range. The second measurement
is made using the appropriate range with the integration specified in the
instruction. Both measurements use the settling time programmed in the
instruction. AutoRange optimizes resolution but takes longer than a
measurement on a fixed range, because of the two measurements required.

An AutoRange measurement will return NAN (Not-A-Number) if the voltage
exceeds the range picked by the first measurement. To avoid problems with a
signal on the edge of a range, AutoRange selects the next larger range when the
signal exceeds 90% of a range.

Section 4. Sensor Support

4-5

AutoRange is recommended for a signal that occasionally exceeds a particular
range, for example, a Type J thermocouple measuring a temperature usually
less than 476 °C (±25 mV range) but occasionally as high as 500 °C (±250 mV
range). AutoRange should not be used for rapidly fluctuating signals,
particularly signals traversing several voltage ranges rapidly. The possibility
exists that the signal can change ranges between the range check and the actual
measurement.

Open Input Detect / Pull into Common Mode

The CR1000 can check for an open measurement circuit or input, as can occur
with a broken sensor wire. Simultaneously, the CR1000 will pull the signal
into common mode range. Range codes ending with “C” enable these features.
Refer to TABLE 4.2-2 for limitations.

Open input detect works by connecting the voltage input to a 300 mV internal
source for 50 µs. A differential voltage input has the high side connected to
300 mV and the low side connected to ground. After disconnecting, the input
is allowed to settle, and the voltage measurement is made. If the sensor is open
(inputs not connected and “floating”) the inputs will remain floating near the
voltage they were connected to; a measurement on the ±2.5 mV, ±7.5 mV,
±25 mV, or the ±250 mV voltage range will over range and return NAN (Not-
A-Number). If the sensor is good, the signal from the sensor will drive the
inputs to the correct value.

Briefly connecting the inputs to the internal CR1000 voltages also serves to
pull a floating differential voltage into the CR1000 common mode (Section 7.2
Common Mode Range). This voltage range option should be used for making
differential voltage measurements of thermocouples (TCDiff) and for other
sensors with floating differential output (e.g., solar radiation sensors).

Open input detect on the ± 2500 mV input range (mV2500C) is available with
some differences from it use on ±2.5 mV, ±7.5 mV, ±25 mV, or the ±250 mV
voltage ranges. With the ± 2500 mV input range, the high side of the input is
internally connected to a voltage that is greater than 2500 mV, but not large
enough to over-range. To detect an open bridge, program If ... Then logic in
the CRBASIC program to determine if the resulting measurement exceeds
2500 mV. For example, the BrHalf() instruction returns the value X defined as
V1 / Vx, where V1 is the measured single-ended voltage and Vx is the user
defined excitation voltage. An result of X > 1 indicates an open input for the
V1 measurement.

4.2.3 Offset Voltage Compensation
Analog measurement circuitry in the CR1000 may introduce a small offset
voltage to a measurement. Depending on the magnitude of the signal, this
offset voltage may introduce significant error. For example, an offset of 3 μV
on a 2500 mV signal introduces an error of only 0.00012%; however, the same
offset on a 0.25 mV signal introduces an error of 1.2%.

The primary source of offset voltage is the Seebeck effect, which arises at the
junctions of differing metals in electronic circuits. A secondary source of
offset voltage are return currents incident to powering external devices through
the CR1000. Return currents create voltage drop at the ground terminals that
may be used as signal references.

Section 4. Sensor Support

4-6

CR1000 measurement instructions incorporate techniques to cancel these
unwanted offsets. TABLE 4.2-3 lists measurement instructions and offset
voltage compensation options available to each.

TABLE 4.2-3. Analog Measurement Offset Voltage Compensation

CRBASIC

Voltage
Measurement

Instruction

Input

Reversal
(RevDiff = True)

Excitation
Reversal

(RevEx = True)

Measure
Ground

Reference
Offset

(MeasOff = True)

Background
Calibration

(RevDiff = False)
(RevEx = False)

(MeasOff = False)
VoltDiff() * *

VoltSe() * *
TCDiff() * *

TCSe() * *
BrHalf() * *

BrHalf3W() * *
Therm107() * *
Therm108() * *
Therm109() * *
BrHalf4W() * * *

BrFull() * * *
BrFull6W() * * *

AM25T() * * *

4.2.3.1 Input and Excitation Reversal (RevDiff, RevEx = True)
Reversing inputs (differential measurements) or reversing polarity of excitation
voltage (bridge measurements) cancels stray voltage offsets. For example, if
there is a +3 μVolt offset in the measurement circuitry, a 5 mV signal will be
measured as 5.003 mV. When the input or excitation is reversed, the
measurement will be -4.997 mV. Subtracting the second measurement from
the first and dividing by 2 cancels the offset:

5.003 mV - (-4.997 mV) = 10.000 mV
10.000 mV / 2 = 5.000 mV.

When the CR1000 reverses differential inputs or excitation polarity, it delays
the same settling time after the reversal as it does before the first measurement.
Thus there are two delays per channel when either RevDiff or RevEx is used.
If both RevDiff and RevEx are True, four measurements are performed;
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. To illustrate,

 the CR1000 switches to the channel
 sets the excitation, settles, measures,
 reverses the excitation, settles, measures,
 reverses the excitation, reverses the inputs, settles, measures,
 reverses the excitation, settles, measures.

Section 4. Sensor Support

4-7

There are four delays per channel measured. The CR1000 processes the four
sub-measurements into a single reported value. In cases of excitation reversal,
excitation "on time" for each polarity is exactly the same to ensure that ionic
sensors do not polarize with repetitive measurements.

Read more! A white paper entitled “The Benefits of Input Reversal and
Excitation Reversal for Voltage Measurements” is available at
www.campbellsci.com.

4.2.3.2 Ground Reference Offset Voltage (MeasOff = True)
When MeasOff is enabled (= True), the CR1000 measures the offset voltage of
the ground reference prior to each VoltSe() or TCSe() measurement. This
offset voltage is subtracted from the subsequent measurement.

4.2.3.3 Background Calibration (RevDiff, RevEx, MeasOff = False)
If RevDiff, RevEx, or MeasOff is disabled (= False) in a measurement
instruction, offset voltage compensation is still performed, albeit less
effectively, by using measurements from automatic background calibration.
Disabling RevDiff, RevEx, or MeasOff speeds up measurement time; however,
the increase in speed comes at the cost of accuracy 1) because RevDiff, RevEx,
and MeasOff are more effective techniques, and 2) because background
calibrations are performed only periodically, so more time skew occurs
between the background calibration offsets and the measurements to which
they are applied.

Disable RevDiff, RevEx and MeasOff when CR1000 module
temperature and return currents are slow to change or when
measurement duration must be minimal to maximize
measurement frequency.

4.2.4 Measurements Requiring AC Excitation
Some resistive sensors require AC excitation. These include electrolytic tilt
sensors, soil moisture blocks, water conductivity sensors and wetness sensing
grids. The use of DC excitation with these sensors can result in polarization,
which will cause erroneous measurement, shift calibration, or lead to rapid
sensor decay.

Other sensors, e.g., LVDTs (Linear Variable Differential Transformer), require
an AC excitation because they rely on inductive coupling to provide a signal.
DC excitation will provide no output.

CR1000 bridge measurements can reverse excitation polarity to provide AC
excitation and avoid ion polarization.

Sensors requiring AC excitation require techniques to minimize
or eliminate ground loops. See Section 7.5 Ground Looping in
Ionic Measurements.

NOTE

NOTE

Section 4. Sensor Support

4-8

4.2.5 Integration
Read more! See a white paper entitled “Preventing and Attacking
Measurement Noise Problems” available at www.campbellsci.com.

The CR1000 incorporates circuitry to perform an analog integration on
voltages to be measured prior to the A/D conversion. The magnitude of the
frequency response of an analog integrator is a SIN(x) / x shape, which has
notches (transmission zeros) occurring at 1 / (integer multiples) of the
integration duration. Consequently, noise at 1 / (integer multiples) of the
integration duration is effectively rejected by an analog integrator. TABLE
4.2-4 lists three integration durations available in the CR1000 and associated
CRBASIC codes. If reversing the differential inputs or reversing the excitation
is specified, there will be two separate integrations per measurement; if both
reversals are specified, there will be four separate integrations.

TABLE 4.2-4. CRBASIC Measurement Settling Time
and Integration Codes

Integration Time (ms) CRBASIC Code Comments

250 μs 250 Fast integration

16.667 ms _60Hz filters 60 Hz noise.
20 ms _50Hz filters 50 Hz noise.

4.2.5.1 AC Power Line Noise Rejection
Grid or mains power (50 or 60 Hz, 230 or 120 VAC) can induce electrical
noise at integer multiples of 50 or 60 Hz. Small analog voltage signals, such as
thermocouples and pyranometers, are particularly susceptible. CR1000 voltage
measurements can be programmed to reject (filter) 50 or 60 Hz related noise.

4.2.5.1.1 AC Noise Rejection on Small Analog Signals

The CR1000 rejects AC power line noise on all voltage ranges except mV5000
and mV2500 by integrating the measurement over exactly one AC cycle before
A/D conversion as illustrated in TABLE 4.2-5 and the full cycle technique of
FIGURE 4.2-1.

TABLE 4.2-5. AC Noise Rejection Integration on Voltage Ranges
Except mV5000 and mV2500

AC Power Line
Frequency

Measurement
Integration Duration

CRBASIC Integration
Code

60 Hz 16.667 ms _60Hz
50 Hz 20 ms _50Hz

http://www.campbellsci.com/�

Section 4. Sensor Support

4-9

FIGURE 4.2-1. Full and ½ Cycle Integration Methods for
AC Power Line Noise Rejection

4.2.5.1.2 AC Noise Rejection on Large Analog Signals

When rejecting AC noise on the 2500 mV and 5000 mV ranges, the CR1000
makes two fast measurements separated in time by ½ line cycle, as illustrated
in FIGURE 4.2-1. For 60 Hz rejection , ½ line cycle = 8333 μs, meaning that
the 2nd measurement must start 8333 μs after the integration for the first
measurement was started. The A/D conversion time is approximately 170 μs,
leaving a maximum input settling time of approximately 8333 μs - 170 μs =
8160 μs before the 2nd measurement is delayed too long to result in a rejection
notch at 60 Hz. For 50 Hz rejection on the mV5000 and mV2500 input ranges,
the maximum input settling time of approximately 10,000 - 170 μs = 9830 μs
before the 2nd measurement is delayed too long to result in a rejection notch at
50 Hz. The CR1000 does not prevent or warn against setting the settling time
beyond the ½ cycle limit. TABLE 4.2-6 lists details of the ½ line cycle AC
power line noise rejection technique.

Section 4. Sensor Support

4-10

TABLE 4.2-6. AC Noise Rejection Integration on Voltage Ranges

mV5000 and mV2500

AC Power
Line

Frequency

Measurement
Integration

Time

CRBASIC
Integration

Code

Default
Settling

Time

Maximum
Recommended
Settling Time*

60 Hz 250 μs x 2 _60Hz 3000 μs 8330 μs
50 Hz 250 μs x 2 _50Hz 3000 μs 10000 μs
*Excitation time equals settling time in measurements requiring excitation. The CR1000 cannot
excite channels Vx/EX1, Vx/EX2, and Vx/EX3 during A/D conversion. The ½ cycle technique
with excitation limits the length of recommended excitation / settling time for the first
measurement to ½ cycle. The CR1000 does not prevent or warn against setting a settling time
beyond the ½ cycle limit. For example, a settling time of up to 50000 microseconds can be
programmed, but the CR1000 will execute the measurement as follows:

1. CR1000 turns excitation on, waits 50000 microseconds, then makes the first measurement.
2. During A/D, CR1000 turns off excitation for ≈ 170 microseconds.
3. Excitation is switched on again for ½ cycle, then the second measurement is made.

Restated, a sensor does not see a continuous excitation of the length entered as the settling time
before the second measurement if the settling time entered is greater than ½ cycle. Depending on
the sensor used, a truncated second excitation may cause measurement errors.

4.2.6 Signal Settling Time
When the CR1000 switches to an analog input channel or activates excitation
for a bridge measurement, a settling time is required for the measured voltage
to settle to its true value before being measured. The rate at which the signal
settles is determined by the input settling time constant which is a function of
both the source resistance and input capacitance.

The CR1000 delays after switching to a channel to allow the input to settle
before initiating the measurement. The SettlingTime parameter of the
associated measurement instruction is provided to allow the user to tailor
measurement instructions settling times with 100 microsecond resolution.
Default settling times are listed in TABLE 4.2-7, and are meant to provide
sufficient signal settling in most cases. Additional settling time may be
required when measuring high resistance (impedance) sensors and / or sensors
connected to the datalogger by long leads. Measurement time of a given
instruction increases with increasing settling time. For example, a 1 ms
increase in SettlingTime for a bridge instruction with input reversal and
excitation reversal results in a 4 ms increase in time for the datalogger to
perform the instruction.

Section 4. Sensor Support

4-11

TABLE 4.2-7. CRBASIC Measurement Settling Times

Settling
Time
Entry

Input
Voltage
Range

Integration

Code

Settling
Time*

0 All 250 ms 450 ms (default)
0 All _50Hz 3 ms (default)
0 All _60Hz 3 ms (default)

>100 All All μs entered
*Minimum settling time required to allow the input to settle to CR1000 resolution specifications.

A finite settling time is required for CR1000 voltage measurements for the
following reasons:

1. A small switching transient occurs when the CR1000 switches to the
single-ended or differential channel to be measured.

2. When switched voltage excitation is used in a bridge measurement, a
relatively large transient on the signal conductor may be induced by
capacitive coupling from the nearby excitation conductor in the cable.

3. Long 50 or 60 Hz integrations require a relatively long reset time of the
internal integration capacitor before the next measurement due to dielectric
absorption.

4.2.6.1 Minimizing Settling Errors
When long lead lengths are required the following general practices can be
used to minimize or measure settling errors:

1. DO NOT USE WIRE WITH PVC INSULATED CONDUCTORS. PVC
has a high dielectric which extends input settling time.

2. Where possible, run excitation leads and signal leads in separate shields to
minimize transients.

3. When measurement speed is not a prime consideration, additional time
can be used to ensure ample settling time. The settling time required can
be measured with the CR1000.

4.2.6.2 Measuring the Necessary Settling Time
Settling time for a particular sensor and cable can be measured with the
CR1000. Programming a series of measurements with increasing settling times
will yield data that indicates at what settling time a further increase results in
negligible change in the measured voltage. The programmed settling time at
this point indicates the true settling time for the sensor and cable combination.

EXAMPLE 4.2-1 presents CRBASIC code to help determine settling time for a
pressure transducer with 200 feet of cable. The code consists of a series of
full-bridge measurements (BrFull) with increasing settling times. The pressure
transducer is placed in steady-state conditions so changes in measured voltage
are attributable to settling time rather than changes in the measured pressure.

Section 4. Sensor Support

4-12

Reviewing Section 9 CR1000 Programming may help in understanding the
CRBASIC code in the example.

EXAMPLE 4.2-1. CRBASIC Code: Measuring Settling Time

'CR1000 Series Datalogger
'Program to measure the settling time of a sensor
'measured with a differential voltage measurement

Public PT(20) 'Variable to hold the measurements

DataTable (Settle,True,100)
 Sample (20,PT(),IEEE4)
EndTable

BeginProg
 Scan (1,Sec,3,0)
 BrFull (PT(1),1,mV7_5,1,Vx1,1,2500,True ,True ,100,250,1.0,0)
 BrFull (PT(2),1,mV7_5,1,Vx1,1,2500,True ,True ,200,250,1.0,0)
 BrFull (PT(3),1,mV7_5,1,Vx1,1,2500,True ,True ,300,250,1.0,0)
 BrFull (PT(4),1,mV7_5,1,Vx1,1,2500,True ,True ,400,250,1.0,0)
 BrFull (PT(5),1,mV7_5,1,Vx1,1,2500,True ,True ,500,250,1.0,0)
 BrFull (PT(6),1,mV7_5,1,Vx1,1,2500,True ,True ,600,250,1.0,0)
 BrFull (PT(7),1,mV7_5,1,Vx1,1,2500,True ,True ,700,250,1.0,0)
 BrFull (PT(8),1,mV7_5,1,Vx1,1,2500,True ,True ,800,250,1.0,0)
 BrFull (PT(9),1,mV7_5,1,Vx1,1,2500,True ,True ,900,250,1.0,0)
 BrFull (PT(10),1,mV7_5,1,Vx1,1,2500,True ,True ,1000,250,1.0,0)
 BrFull (PT(11),1,mV7_5,1,Vx1,1,2500,True ,True ,1100,250,1.0,0)
 BrFull (PT(12),1,mV7_5,1,Vx1,1,2500,True ,True ,1200,250,1.0,0)
 BrFull (PT(13),1,mV7_5,1,Vx1,1,2500,True ,True ,1300,250,1.0,0)
 BrFull (PT(14),1,mV7_5,1,Vx1,1,2500,True ,True ,1400,250,1.0,0)
 BrFull (PT(15),1,mV7_5,1,Vx1,1,2500,True ,True ,1500,250,1.0,0)
 BrFull (PT(16),1,mV7_5,1,Vx1,1,2500,True ,True ,1600,250,1.0,0)
 BrFull (PT(17),1,mV7_5,1,Vx1,1,2500,True ,True ,1700,250,1.0,0)
 BrFull (PT(18),1,mV7_5,1,Vx1,1,2500,True ,True ,1800,250,1.0,0)
 BrFull (PT(19),1,mV7_5,1,Vx1,1,2500,True ,True ,1900,250,1.0,0)
 BrFull (PT(20),1,mV7_5,1,Vx1,1,2500,True ,True ,2000,250,1.0,0)
 CallTable Settle
 NextScan
EndProg

The first six measurements are shown in TABLE 4.2-8. Each trace in FIGURE
4.2-2. Settling Time for Pressure TransducerFIGURE 4.2-2 contains all 20
PT() values for a given record number, along with an averaged value showing
the measurements as percent of final reading. The reading has settled to 99.5%
of the final value by the fourteenth measurement, PT(14). This is a suitable
accuracy for the application, so a settling time of 1400 μs is determined to be
adequate.

Section 4. Sensor Support

4-13

Settling Time

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (x100 us)

m
V/

Vo
lt

85

87

89

91

93

95

97

99

%
 o

f F
in

al
 V

al
ue

Series1
Series2
Series3
Series4
Series5
Average %

FIGURE 4.2-2. Settling Time for Pressure Transducer

TABLE 4.2-8. First Six Values of Settling Time Data

TIMESTAMP RECORD PT(1) PT(2) PT(3) PT(4) PT(5) PT(6)

 Smp Smp Smp Smp Smp Smp

1/3/2000 23:34 0 0.03638599 0.03901386 0.04022673 0.04042887 0.04103531 0.04123745

1/3/2000 23:34 1 0.03658813 0.03921601 0.04002459 0.04042887 0.04103531 0.0414396

1/3/2000 23:34 2 0.03638599 0.03941815 0.04002459 0.04063102 0.04042887 0.04123745

1/3/2000 23:34 3 0.03658813 0.03941815 0.03982244 0.04042887 0.04103531 0.04103531

1/3/2000 23:34 4 0.03679027 0.03921601 0.04022673 0.04063102 0.04063102 0.04083316

4.2.7 Self-Calibration
The CR1000 is equipped to routinely self-calibrate to compensate for changes
in calibration induced by fluctuating operating temperatures and aging.
Without self-calibration, measurement accuracy over the operational
temperature range is worse by about a factor of 10. That is, over the extended
temperature range of -40°C to 85°C, the accuracy specification of ±0.12% of
reading can degrade to ±1% of reading with the self-calibration disabled. If the
temperature of the CR1000 remains the same, there will be little calibration
drift with self-calibration disabled.

Unless a Calibrate() instruction is present in the running CRBASIC program,
the CR1000 automatically performs self-calibration during spare time in a slow
sequence (background), with a segment of the calibration occurring every 4
seconds (s). If there is insufficient spare time to do the background calibration
because of a consuming user program, the CR1000 will display the following
warning at compile time: “Warning when Fast Scan x is running background
calibration will be disabled”.

Section 4. Sensor Support

4-14

The composite transfer function of the instrumentation amplifier, integrator,
and analog-to-digital converter of the CR1000 is described by the following
equation:

 COUNTS = G * Vin + B

where COUNTS is the result from an analog-to-digital conversion, G is the
voltage gain for a given input range, and B is the internally measured offset
voltage.

Automatic self-calibration only calibrates the G and B values necessary to run
a given CRBasic program, resulting in a program dependent number of self-
calibration segments ranging from at least 6 to a maximum of 91. A typical
number of segments required in self-calibration is 20 for analog ranges and 1
segment for the panel temperature measurement, totaling 21 segments. So, (21
segments) * (4 s / segment) = 84 s per complete self-calibration. The worst-
case will be (91 segments) * (4 s / segment) = 364 s per complete self-
calibration.

During instrument power-up, the CR1000 computes calibration coefficients by
averaging 10 complete sets of self-calibration measurements. After power up,
newly determined G and B values are low-pass filtered as followed:
Next_Value = (1/5) * New + (4/5) * Old. For a step change of the New value,
the low-pass filter Next_Value = (1/5) * New + (4/5) * Old results in 20%
settling for 1 New value, 49% settling for 3 New values, 67% settling for 5
New values, 89% settling for 10 New values, and 96% settling for 14 New
values. If this rate of update for measurement channels is too slow, a user can
utilize the Calibrate() instruction. The Calibrate() instruction computes the
necessary G and B values every scan without any low-pass filtering.

For a VoltSe() instruction, B is determined as part of self-calibration only if the
parameter MeasOff = 0. An exception is B for VoltSe() on the ±2500 mV
input range with 250 μs integration, which is always determined in self-
calibration for use internally. For a VoltDiff() instruction, B is determined as
part of self-calibration only if the parameter RevDiff = 0.

VoltSe() and VoltDiff() instructions on a given input range with the same
integration durations, utilize the same G, but different B values. The 6 input
voltage ranges (±5000 mV, ±2500 mV, ±250 mV, ±25 mV, ±7.5 mV, and ±2.5
mV) along with the 3 different integration durations (250 μs, _50Hz, & _60Hz)
result in a maximum of 18 different gains (G), and 18 offsets for VoltSe()
measurements (B), and 18 offsets for VoltDiff() measurements (B) to be
determined during CR1000 self-calibration (maximum of 54 values).

The various G and B values can be viewed in the Status Table as CalGain(1)
through CalGain(18), CalSeOffset(1) through CalSeOffset(18), and
CalDiffOffset(1) through CalDiffOffset(18), with an order of 250 μs
integration, _60Hz integration, and _50Hz integration on the following input
voltage ranges: ±5000 mV, ±2500 mV, ±250 mV, ±25 mV, ±7.5 mV, and ±2.5
mV.

An example of the Calibrate instruction for all input ranges is given as
Calibrate(cal(1),true), where Dest is an array of 54 values, and Range ≠ 0 in
order to calibrate all input ranges. TABLE 4.2-9 describes the 54 values
generated from the Calibrate(cal(1),true) instruction.

Section 4. Sensor Support

4-15

TABLE 4.2-9. Values Generated by the Calibrate() Instruction

Array
Element Description Typical Value

1 SE offset for ±5000 mV input range with 250 ms integration. ±5 LSB
2 Differential offset for ±5000 mV input range with 250 ms

integration.
±5 LSB

3 Gain for ±5000 mV input range with 250 ms integration. -1.34 mV/LSB
4 SE offset for ±2500 mV input range with 250 ms integration. ±5 LSB
5 Differential offset for ±2500 mV input range with 250 ms

integration.
±5 LSB

6 Gain for ±2500 mV input range with 250 ms integration. -0.67 mV/LSB
7 SE offset for ±250 mV input range with 250 ms integration. ±5 LSB
8 Differential offset for ±250 mV input range with 250 ms

integration.
±5 LSB

9 Gain for ±250 mV input range with 250 ms integration. -0.067 mV/LSB
10 SE offset for ±25 mV input range with 250 ms integration. ±5 LSB
11 Differential offset for ±25 mV input range with 250 ms

integration.
±5 LSB

12 Gain for ±25 mV input range with 250 ms integration. -0.0067 mV/LSB
13 SE offset for ±7.5 mV input range with 250 ms integration. ±10 LSB
14 Differential offset for ±7.5 mV input range with 250 ms

integration.
±10 LSB

15 Gain for ±7.5 mV input range with 250 ms integration. -0.002 mV/LSB
16 SE offset for ±2.5 mV input range with 250 ms integration. ±20 LSB
17 Differential offset for ±2.5 mV input range with 250 ms

integration.
±20 LSB

18 Gain for ±2.5 mV input range with 250 ms integration. -0.00067 mV/LSB
19 SE offset for ±5000 mV input range with 60 Hz integration. ±5 LSB
20 Differential offset for ±5000 mV input range with 60 Hz

integration.
±5 LSB

21 Gain for ±5000 mV input range with 60 Hz integration. -0.67 mV/LSB
22 SE offset for ±2500 mV input range with 60 Hz integration. ±5 LSB
23 Differential offset for ±2500 mV input range with 60 Hz

integration.
±5 LSB

24 Gain for ±2500 mV input range with 60 Hz integration. -0.34 mV/LSB
25 SE offset for ±250 mV input range with 60 Hz integration. ±5 LSB
26 Differential offset for ±250 mV input range with 60 Hz

integration.
±5 LSB

27 Gain for ±250 mV input range with 60 Hz integration. -0.067 mV/LSB
28 SE offset for ±25 mV input range with 60 Hz integration. ±5 LSB
29 Differential offset for ±25 mV input range with 60 Hz integration. ±5 LSB
30 Gain for ±25 mV input range with 60 Hz integration. -0.0067 mV/LSB

Section 4. Sensor Support

4-16

31 SE offset for ±7.5 mV input range with 60 Hz integration. ±10 LSB
32 Differential offset for ±7.5 mV input range with 60 Hz

integration.
±10 LSB

33 Gain for ±7.5 mV input range with 60 Hz integration. -0.002 mV/LSB
34 SE offset for ±2.5 mV input range with 60 Hz integration. ±20 LSB
35 Differential offset for ±2.5 mV input range with 60 Hz

integration.
±20 LSB

36 Gain for ±2.5 mV input range with 60 Hz integration. -0.00067 mV/LSB
37 SE offset for ±5000 mV input range with 50 Hz integration. ±5 LSB
38 Differential offset for ±5000 mV input range with 50 Hz

integration.
±5 LSB

39 Gain for ±5000 mV input range with 50 Hz integration. -0.67 mV/LSB
40 SE offset for ±2500 mV input range with 50 Hz integration. ±5 LSB
41 Differential offset for ±2500 mV input range with 50 Hz

integration.
±5 LSB

42 Gain for ±2500 mV input range with 50 Hz integration. -0.34 mV/LSB
43 SE offset for ±250 mV input range with 50 Hz integration. ±5 LSB
44 Differential offset for ±250 mV input range with 50 Hz

integration.
±5 LSB

45 Gain for ±250 mV input range with 50 Hz integration. -0.067 mV/LSB
46 SE offset for ±25 mV input range with 50 Hz integration. ±5 LSB
47 Differential offset for ±25 mV input range with 50 Hz integration. ±5 LSB
48 Gain for ±25 mV input range with 50 Hz integration. -0.0067 mV/LSB
49 SE offset for ±7.5 mV input range with 50 Hz integration. ±10 LSB
50 Differential offset for ±7.5 mV input range with 50 Hz

integration.
±10 LSB

51 Gain for ±7.5 mV input range with 50 Hz integration. -0.002 mV/LSB
52 SE offset for ±2.5 mV input range with 50 Hz integration. ±20 LSB
53 Differential offset for ±2.5 mV input range with 50 Hz

integration.
±20 LSB

54 Gain for ±2.5 mV input range with 50 Hz integration. -0.00067 mV/LSB

4.3 Bridge Resistance Measurements
Many sensors detect phenomena by way of change in a resistive circuit.
Thermistors, strain gages, and position potentiometers are examples.
Resistance measurements are special case voltage measurements. By
supplying a precise, known voltage to a resistive circuit, then measuring the
returning voltage, resistance can be calculated.

Five bridge measurement instructions are included in the CR1000.
FIGURE 4.3-1 shows the circuits that are typically measured with these
instructions. In the diagrams, resistors labeled Rs are normally the sensors and
those labeled Rf are normally precision fixed (static) resistors. Circuits other
than those diagrammed can be measured, provided the excitation and type of

Section 4. Sensor Support

4-17

measurements are appropriate. Program Code EXAMPLE 4.3-1 shows
CR1000 code for measuring and processing four wire full bridge circuits.

All bridge measurements have the option (RevEx) to make one set of
measurements with the excitation as programmed and another set of
measurements with the excitation polarity reversed. The offset error in the two
measurements due to thermal EMFs can then be accounted for in the
processing of the measurement instruction. The excitation channel maintains
the excitation voltage or current until the hold for the analog to digital
conversion is completed. When more than one measurement per sensor is
necessary (four wire half bridge, three wire half bridge, six wire full bridge),
excitation is applied separately for each measurement. For example, in the
four-wire half-bridge, when the excitation is reversed, the differential
measurement of the voltage drop across the sensor is made with the excitation
at both polarities and then excitation is again applied and reversed for the
measurement of the voltage drop across the fixed resistor.

Calculating the resistance of a sensor that is one of the legs of a resistive bridge
requires additional processing following the bridge measurement instruction.
FIGURE 4.3-1 lists the schematics of typical bridge configurations and the
calculations necessary to compute the resistance of any single resistor,
provided the values of the other resistors in the bridge circuit are known.

Section 4. Sensor Support

4-18

Sensor Schematic Base Equation Formulae
BrHalf

X = result w/mult = 1, offset = 0

fs

s

x

1

RR
R

V
VX

+
==

()
X

X1RR

X1
XRR

s
f

fs

−
=

−
=

BrHalf3W

X = result w/mult = 1, offset = 0

f

s

1X

12

R
R

VV
VV2X =

−
−

= X/RR
XRR

sf

fs

=
=

BrHalf4W

H

L
H

L

X = result w/mult = 1, offset = 0

f

s

1

2

R
R

V
VX == X/RR

XRR

sf

fs

=
=

BrFull

H
L

X = result w/mult = 1, offset = 0

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+
==

2R1R
2R

4R3R
3R

1000
xV
1V

1000X
The following equations apply to
BrFull and BrFull6W

()

1

11
2

1

12
1

X1
XRR

X
X1RR

−
=

−
=

43

3
1 RR

R
1000

XX where
+

+
−

=

BrFull6W

H
L

H
L

X = result w/mult = 1, offset = 0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

==
21

2

43

3

1

2

RR
R

RR
R1000

V
V1000X

()
2

23
4

2

24
3

X
X1RR

X1
XRR

−
=

−
=

21

2
2 RR

R
1000

XX where
+

+=

FIGURE 4.3-1. Circuits Used with Bridge Measurement Instructions

Section 4. Sensor Support

4-19

EXAMPLE 4.3-1. CRBASIC Code: 4 Wire Full Bridge Measurement and Processing

'Declare Variables
Public X
Public X1
Public R1
Public R2
Public R3
Public R4

'Main Program
BeginProg
 R2 = 1000 'Resistance of R2
 R3 = 1000 'Resistance of R3
 R4 = 1000 'Resistance of R4

 Scan(500,mSec,1,0)

 'Full Bridge measurement:
 BrFull(X,1,mV2500,1,1,1,2500,True,True,0,_60Hz,1.0,0.0)
 X1 = ((-1 * X) / 1000) + (R3 / (R3 + R4))
 R1 = (R2 * (1 - X1)) / X1

 NextScan

EndProg

4.3.1 Strain Calculations
Read more! FieldCalStrain in Section 11.1.6 FieldCalStrain()
Demonstration Program.

A principal use of the four wire full bridge is the measurement of strain gages
in structural stress analysis. StrainCalc() calculates microstrain, με, from an
appropriate formula for the particular strain bridge configuration used. All
strain gages supported by StrainCalc() use the full Wheatstone bridge
electronic configuration. In strain gage parlance, “quarter bridge”, “half
bridge” and “full bridge” refer to the number of active elements in the full
Wheatstone bridge, i.e., 1, 2, or 4 active elements respectively.

StrainCalc() requires a bridge configuration code. TABLE 4.3-1 shows the
equation invoked by each configuration code. Each code can be preceded by a
negative sign (-). A positive code is employed when the bridge is configured
so the output decreases with increasing strain (compression). A negative code
is employed when the bridge is configured so the output increases with
increasing strain (tension). In the equations below, a negative code sets the
polarity of Vr to negative (-).

Section 4. Sensor Support

4-20

TABLE 4.3-1. Strain Equations

Code Configuration
1

Quarter bridge strain gage
)V21(GF

V104

r

r
6

+
⋅−

=με

2 Half bridge strain gage, one gage parallel to strain, the other at
90° to strain:

)]1(V2)1[(GF

V104

r

r
6

−ν−ν+
⋅−

=με

3 Half bridge strain gage, one gage parallel to ε+ , the other
parallel to ε− :

GF

V102 r
6⋅−

=με

4 Full bridge strain gage, 2 gages parallel to ε+ , the other 2
parallel to ε− :

GF

V10 r
6−

=με

5 Full bridge strain gage, half the bridge has 2 gages parallel to
ε+ and ε− : the other half νε+ and νε− :

)1(GF

V102 r
6

+ν
⋅−

=με

6 Full bridge strain gage, one half ε+ and νε− , the other half
νε− and ε+ .:

)]1(V)1[(GF

V102

r

r
6

−ν−+ν
⋅−

=με

where:

v = Poisson Ratio (0 if not applicable)
GF = Gage Factor
Vr = −0 001. ()Source Zero if BRConfig code is positive (+)
Vr = − −0 001. ()Source Zero if BRConfig code is negative (-)

where:

“source” = the result of the full Wheatstone bridge measurement
(X = 1000 * V1 / Vx) when multiplier = 1 and offset = 0.

“zero” = gage offset to establish an arbitrary zero (see FieldCalStrain).

StrainCalc Example - See FieldCalStrain() Example for Quarter bridge.

Section 4. Sensor Support

4-21

4.4 Thermocouple Measurements
Thermocouples are easy to use with the CR1000. They are also
inexpensive. However, they pose several challenges to the
acquisition of accurate temperature data, particularly when using
external reference junctions. Campbell Scientific strongly
encourages any user of thermocouples to carefully evaluate
Section 4.4.1 Error Analysis of Thermocouple Measurements.

The micro-volt resolution and low-noise voltage measurement capability of the
CR1000 is well suited for measuring thermocouples. A thermocouple consists
of two dissimilar metal wires joined together at one end to form a junction.
Practical thermocouples are constructed from two parallel insulated wires of
dissimilar metals soldered or welded together at the junction. A temperature
difference between the junction and the unconnected wires opposite the
junction induces a temperature dependent voltage between the wires, referred
to as the Seebeck effect. Measurement of the voltage between the unconnected
wires opposite the junction provides a direct measure of the temperature
difference between the junction and the measurement end. Metallic
connections (e.g., solder) between the two dissimilar metal wires and the
measurement device form parasitic thermocouple junctions, the effects of
which cancel if the two wires are at the same temperature. Consequently, the
two wires at the measurement end of the thermocouple, referred to as the
reference junction, are placed in close proximity and thermally connected so
that they are at the same temperature. Knowledge of the reference junction
temperature provides the determination of a reference junction compensation
voltage, corresponding to the temperature difference between the reference
junction and 0°C. This compensation voltage, combined with the measured
thermocouple voltage, can be used to compute the absolute temperature of the
thermocouple junction. To facilitate thermocouple measurements, a thermistor
is integrated into the CR1000 wiring panel for measurement of the reference
junction temperature by means of the PanelTemp() instruction.

TCDiff() and TCSe() thermocouple instructions determine thermocouple
temperatures using the following sequence. First, the temperature (°C) of the
reference junction is determined. A reference junction compensation voltage is
next computed based on the temperature difference between the reference
junction and 0 °C. If the reference junction is the CR1000 analog input
terminals, the temperature is conveniently measured with the PanelTemp()
instruction. The actual thermocouple voltage is measured and combined with
the reference junction compensation voltage. It is then used to determine the
thermocouple junction temperature based on a polynomial approximation of
NIST thermocouple calibrations.

4.4.1 Error Analysis
The error in the measurement of a thermocouple temperature is the sum of the
errors in the reference junction temperature measurement plus the temperature-
to-voltage polynomial fit error, the non-ideality of the thermocouple (deviation
from standards published in NIST Monograph 175), the thermocouple voltage
measurement accuracy, and the voltage-to-temperature polynomial fit error
(difference between NIST standard and CR1000 polynomial approximations).
The discussion of errors that follows is limited to these errors in calibration and

NOTE

Section 4. Sensor Support

4-22

measurement and does not include errors in installation or matching the sensor
and thermocouple type to the environment being measured.

4.4.1.1 Panel Temperature
The panel temperature thermistor (Betatherm 10K3A1A) is just under the panel
in the center of the two rows of analog input terminals. It has an
interchangeability specification of 0.1 °C for temperatures between 0 and 70
°C. Below freezing and at higher temperatures, this specification is degraded.
Combined with possible errors in the completion resistor measurement and the
Steinhart and Hart equation used to calculate the temperature from resistance,
the accuracy of panel temperature is estimated at ± 0.1°C over -0 to 40°C, ±
0.3°C from -25 to 50°C, and ± 0.8°C from -55 to 85°C.

The error in the reference temperature measurement is a combination of the
error in the thermistor temperature and the difference in temperature between
the panel thermistor and the terminals the thermocouple is connected to. The
terminal strip cover should always be used when making thermocouple
measurements. It insulates the terminals from drafts and rapid fluctuations in
temperature as well as conducting heat to reduce temperature gradients. In a
typical installation where the CR1000 is in a weather proof enclosure not
subject to violent swings in temperature or uneven solar radiation loading, the
temperature difference between the terminals and the thermistor is likely to be
less than 0.2 °C.

Panel Temperature error summary

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-55 -35 -15 5 25 45 65 85

Sum of Worst Case Errors

Thermistor Tolerance

CR1000 Measurement

Completion Resistor Error

S&H Err

FIGURE 4.4-1. Panel Temperature Errors

With an external driving gradient, the temperature gradients on the input panel
can be much worse. For example, the CR1000 was placed in a controlled
temperature chamber. Thermocouples in channels at the ends and middle of

Panel Temperature ºC

E
rro

rº
C

Section 4. Sensor Support

4-23

each analog terminal strip measured the temperature of an insulated aluminum
bar outside the chamber. The temperature of this bar was also measured by
another datalogger. Differences between the temperature measured by one of
the thermocouples and the actual temperature of the bar are due to the
temperature difference between the terminals the thermocouple is connected to
and the thermistor reference (the figures have been corrected for thermistor
errors). FIGURE 4.4-2 shows the errors when the chamber was changed from
-55 to 85°C in approximately 15 minutes. FIGURE 4.4-3 shows the results
when going from 85 to 25°C. During these rapid changes in temperature, the
temperature of panel thermistor will tend to lag behind the terminals because it
is mounted deeper in the CR1000.

Reference Temperature Errors Due to Panel Gradient
Chamber Changed from - 55 to 85 degrees C

-2

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
Time Minutes

M
ea

su
re

d
- A

ct
ua

l d
eg

re
es

 C

-60

-40

-20

0

20

40

60

80

C
ha

m
be

r a
nd

 R
ef

er
en

ce
 T

em
pe

ra
tu

re
 d

eg
re

es
 C

Channel 1
Channel 3
Channel 4
Channel 5
Channel 6
Channel 8
RefTemp_Avg
Chamber Temp

FIGURE 4.4-2. Panel Temperature Gradients during -55 to 80 °C Change

Section 4. Sensor Support

4-24

Reference Temperature Errors Due to Panel Gradient
Chamber Changed from 85 to 25 degrees C

-6

-5

-4

-3

-2

-1

0

1

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Time Minutes

M
ea

su
re

d
- A

ct
ua

l d
eg

re
es

 C

20

30

40

50

60

70

80

90

C
ha

m
be

r a
nd

 R
ef

er
en

ce
 T

em
pe

ra
tu

re
s

de
g.

 C

Channel 1
Channel 3
Channel 4
Channel 6
Channel 8
RefTemp_Avg
Chamber Temp

FIGURE 4.4-3. Panel Temperature Gradients during 80 to 25 °C Change

4.4.1.2 Thermocouple Limits of Error
The standard reference that lists thermocouple output voltage as a function of
temperature (reference junction at 0 oC) is the NIST (National Institute of
Standards and Technology) Monograph 175 (1993). ANSI (American National
Standards Institute) has established limits of error on thermocouple wire which
is accepted as an industry standard (ANSI MC 96.1, 1975). TABLE 4.4-1
gives the ANSI limits of error for standard and special grade thermocouple
wire of the types accommodated by the CR1000.

TABLE 4.4-1. Limits of Error for Thermocouple Wire (Reference Junction at 0oC)

 Limits of Error
 Thermocouple Temperature (Whichever is greater)
 Type Range oC Standard Special
 T -200 to 0 ± 1.0oC or 1.5%
 0 to 350 ± 1.0oC or 0.75% ± 0.5oC or 0.4%
 J 0 to 750 ± 2.2oC or 0.75% ± 1.1oC or 0.4%
 E -200 to 0 ± 1.7oC or 1.0%
 0 to 900 ± 1.7oC or 0.5% ± 1.0oC or 0.4%
 K -200 to 0 ± 2.2oC or 2.0%
 0 to 1250 ± 2.2oC or 0.75% ± 1.1oC or 0.4%
 R or S 0 to 1450 ± 1.5oC or 0.25% ± 0.6oC or 0.1%
 B 800 to 1700 ± 0.5% Not Estab.

Section 4. Sensor Support

4-25

When both junctions of a thermocouple are at the same temperature there is no
voltage produced (law of intermediate metals). A consequence of this is that a
thermocouple cannot have an offset error; any deviation from a standard
(assuming the wires are each homogeneous and no secondary junctions exist)
is due to a deviation in slope. In light of this, the fixed temperature limits of
error (e.g., ±1.0 °C for type T as opposed to the slope error of 0.75% of the
temperature) in the table above are probably greater than one would experience
when considering temperatures in the environmental range (i.e., the reference
junction, at 0 °C, is relatively close to the temperature being measured, so the
absolute error — the product of the temperature difference and the slope error
— should be closer to the percentage error than the fixed error). Likewise,
because thermocouple calibration error is a slope error, accuracy can be
increased when the reference junction temperature is close to the measurement
temperature. For the same reason differential temperature measurements, over
a small temperature gradient, can be extremely accurate.

To quantitatively evaluate thermocouple error when the reference junction is
not fixed at 0 oC, limits of error for the Seebeck coefficient (slope of
thermocouple voltage vs. temperature curve) are needed for the various
thermocouples. Lacking this information, a reasonable approach is to apply the
percentage errors, with perhaps 0.25% added on, to the difference in
temperature being measured by the thermocouple.

4.4.1.3 Accuracy of Thermocouple Voltage Measurement
The -25 to 50 °C accuracy of a CR1000 differential voltage measurement,
without input reversal, is specified as ± (0.12% of the measured voltage plus an
offset error of 3 times the basic resolution of the range being used to make the
measurement plus 2 μV). The offset error reduces to 1.5 times the basic
resolution plus 1 μV if the differential measurement is made utilizing the
option to reverse the differential input (RevDiff = True).

For optimum resolution, the ±2.5 mV range is used for all but high temperature
measurements (TABLE 4.4-2). Using the 0.67 μV basic resolution of the
±2.5 mV range in the offset equations above, the offset portion of the accuracy
specification is 4 μV without input reversal or 2 μV with input reversal. This
offset portion of the accuracy specification dominates the voltage measurement
error for temperatures in the environmental range. At the full scale the other
part of the accuracy term is 0.12% of 2.5 mV = 2 μV. For example, assume
that a type T thermocouple is used to measure a temperature of 45 °C and that
the reference temperature is 25 °C. The voltage output by the thermocouple is
830.7 µV. At 45 degrees a type T thermocouple outputs 42.4 µV per oC. The
percent of reading error in the voltage measurement is 0.0012 * 830.7 µV =
1 µV or 0.023 oC (1 / 42.4). The basic resolution on the ±2.5 mV range is
0.67 µV or 0.016 oC. The 2 μV offset is an error of 0.047 oC. Thus, the
possible error due to the voltage measurement is 0.07 oC when reversing
differential inputs, or 0.118 oC when not reversing differential inputs.

Error in the temperature due to inaccuracy in the measurement of the
thermocouple voltage is worst at temperature extremes, particularly when the
temperature and thermocouple type require using the 250 mV range. For
example, assume type K (chromel-alumel) thermocouples are used to measure
temperatures around 1300 oC. The TC output is on the order of 52 mV,
requiring the ±250 mV input range. At 1300 oC, a K thermocouple outputs
34.9 µV per oC. The percent of reading error in the voltage measurement is

Section 4. Sensor Support

4-26

0.0012 * 52 mV = 62 µV or 1.78 oC (62 / 34.9). The basic resolution on the
250 mV range is 66.7 µV or 1.91 oC. Thus, the possible error due to the
voltage measurement is 4.38 oC when reversing differential inputs, or 7.28 oC
when not reversing differential inputs.

TABLE 4.4-2. Voltage Range for Maximum Thermocouple Resolution
(with reference temperature at 20oC)

TC Type and
temp. range oC

Temp. range
for ±2.5 mV
range

Temp. range
for ±7.5 mV
range

Temp. range
for ±25 mV
range

Temp. range for
±250 mV range

T -270 to 400 -45 to 75 -270 to 180 -270 to 400 not used
E -270 to 1000 -20 to 60 -120 to 130 -270 to 365 >365
K -270 to 1372 -40 to 80 -270 to 200 -270 to 620 >620
J -210 to 1200 -25 to 65 -145 to 155 -210 to 475 >475
B 0 to 1820 0 to 710 0 to 1265 0 to 1820 not used
R -50 to 1768 -50 to 320 -50 to 770 -50 to 1768 not used
S -50 to 1768 -50 to 330 -50 to 820 -50 to 1768 not used
N -270 to 1300 -80 to 105 -270 to 260 -270 to 725 >725

When the thermocouple measurement junction is in electrical contact with the
object being measured (or has the possibility of making contact) a differential
measurement should be made to avoid ground looping.

4.4.1.4 Noise on Voltage Measurement
The typical input noise on the ±2.5 mV range for a differential measurement
with 16.67 ms integration and input reversal is 0.19 μV RMS. On a type T
thermocouple (approximately 40 μV/°C), this is 0.005 °C. Note that this is an
RMS value; some individual readings will vary by greater than this.

4.4.1.5 Thermocouple Polynomial: Voltage to Temperature
NIST Monograph 175 gives high order polynomials for computing the output
voltage of a given thermocouple type over a broad range of temperatures. In
order to speed processing and accommodate the CR1000's math and storage
capabilities, four separate 6th order polynomials are used to convert from volts
to temperature over the range covered by each thermocouple type. TABLE
4.4-3 gives error limits for the thermocouple polynomials.

Section 4. Sensor Support

4-27

TABLE 4.4-3. Limits of Error on CR1000 Thermocouple Polynomials

(Relative to NIST Standards)

 TC
 Type Range oC Limits of Error oC
 T -270 to 400
 -270 to -200 + 18 @ -270
 -200 to -100 ± 0.08
 -100 to 100 ± 0.001
 100 to 400 ± 0.015
 J -150 to 760 ± 0.008
 -100 to 300 ± 0.002
 E -240 to 1000
 -240 to -130 ± 0.4
 -130 to 200 ± 0.005
 200 to 1000 ± 0.02
 K -50 to 1372
 -50 to 950 ± 0.01
 950 to 1372 ± 0.04

4.4.1.6 Reference Junction Compensation: Temperature to Voltage
Thermocouple instructions TCDiff() and TCSe() utilize the parameter (TRef)
to incorporate the associated reference junction temperature into the
thermocouple measurement. A reference junction compensation voltage is
computed from (TRef) as part of the thermocouple instruction, based on the
temperature difference between the reference junction and 0°C. The
polynomials used to determine the reference junction compensation voltage do
not cover the entire thermocouple range, as illustrated in TABLE 4.4-3 and
TABLE 4.4-4. Substantial errors in the reference junction compensation
voltage will result if the reference junction temperature is outside of the
polynomial fit ranges given in TABLE 4.4-4.

The reference junction temperature measurement can come from a
PanelTemp() instruction, or from any other temperature measurement of the
reference junction. The standard and extended (-XT) operating ranges for the
CR1000 are -25 to +50 °C and –55 to 85 °C, respectively. These ranges also
apply to the reference junction temperature measurement using PanelTemp().

Two sources of error arise when the reference temperature is out of the
polynomial fit range. The most significant error is in the calculated
compensation voltage; however a small error is also created by non-linearities
in the Seebeck coefficient.

TABLE 4.4-4. Reference Temperature Compensation Range and
Polynomial Error Relative to NIST Standards

 TC
 Type Range oC Limits of Error oC
 T -100 to 100 ± 0.001
 J -150 to 296 ± 0.005
 E -150 to 206 ± 0.005
 K -50 to 100 ± 0.01

Section 4. Sensor Support

4-28

4.4.1.7 Error Summary
The magnitude of the errors described in Section 4.4.1 illustrate that the
greatest sources of error in a thermocouple temperature measurement are likely
due to the limits of error on the thermocouple wire and in the reference
temperature. Errors in the thermocouple and reference temperature
linearizations are extremely small, and error in the voltage measurement is
negligible.

TABLE 4.4-5 illustrates the relative magnitude of these errors in the
environmental range. It shows a worst case situation where all errors are
maximum and additive. A temperature of 45 oC is measured with a type T
(copper-constantan) thermocouple, using the ±2.5 mV range. The reference
thermistor measures 25.1 oC, The terminal the thermocouple is connected to is
0.05 oC cooler than the reference thermistor (0.15 °C error).

TABLE 4.4-5. Example of Errors in Thermocouple Temperature

Source Error: oC : % of Total Error
 Single Differential

250 µs Integration
Reversing Differential

50/60 Hz Rejection Integration
 ANSI TC Error

(1oC)
TC Error 1%
Slope

ANSI TC
Error (1oC)

TC Error 1%
Slope

Reference Temp. 0.15o:11.5% 0.15o:29.9% 0.15o:12.2% 0.15o:34.7%
TC Output 1.0o:76.8% 0.2o:39.8% 1.0o:81.1% 0.2o:46.3%
Voltage
Measurement

0.12o:9.2% 0.12o:23.9% 0.07o:5.7% 0.07o:16.2%

Noise 0.03o:2.3% 0.03o:6.2% 0.01o:0.8% 0.01o:2.3%
Reference
Linearization

0.001o:0.1% 0.001o:0.2% 0.001o:0.1% 0.001o:0.25%

Output
Linearization

0.001o:0.1% 0.001o:0.2% 0.001o:0.1% 0.001o:0.25%

Total Error 1.302o:100% 0.502o:100% 1.232o:100% 0.432o:100%

4.4.1.8 Use of External Reference Junction
An external junction in an insulated box is often used to facilitate thermocouple
connections. It can reduce the expense of thermocouple wire when
measurements are made long distances from the CR1000. Making the external
junction the reference junction, which is preferable in most applications, is
accomplished by running copper wire from the junction to the CR1000.
Alternatively, the junction box can be used to couple extension grade
thermocouple wire to the thermocouples, with the PanelTemp() instruction
used to determine the reference junction temperature.

Extension grade thermocouple wire has a smaller temperature range than
standard thermocouple wire, but meets the same limits of error within that
range. One situation in which thermocouple extension wire is advantageous is
when the junction box temperature is outside the range of reference junction
compensation provided by the CR1000. This is only a factor when using type

Section 4. Sensor Support

4-29

K thermocouples, since the upper limit of the reference compensation
polynomial fit range is 100 oC and the upper limit of the extension grade wire
is 200 oC. With the other types of thermocouples the reference compensation
polynomial fit range equals or is greater than the extension wire range. In any
case, errors can arise if temperature gradients exist within the junction box.

FIGURE 4.4-4 illustrates a typical junction box wherein the reference junction
is the CR1000. Terminal strips will be a different metal than the thermocouple
wire. Thus, if a temperature gradient exists between A and A' or B and B', the
junction box will act as another thermocouple in series, creating an error in the
voltage measured by the CR1000. This thermoelectric offset voltage is also a
factor when the junction box is used as the reference junction. This offset can
be minimized by making the thermal conduction between the two points large
and the distance small. The best solution in the case where extension grade
wire is being connected to thermocouple wire is to use connectors which clamp
the two wires in contact with each other.

CR9000

H

L

A' A

B' B

Junction Box

TC
CR1000 Junction Box

FIGURE 4.4-4. Diagram of Junction Box

When an external junction box is also the reference junction, the points A, A',
B, and B' in FIGURE 4.4-4 all need to be very close in temperature
(isothermal) to measure a valid reference temperature, and to avoid
thermoelectric offset voltages. The box should contain elements of high
thermal conductivity, which will act to rapidly equilibrate any thermal
gradients to which the box is subjected. It is not necessary to design a constant
temperature box; it is desirable that the box respond slowly to external
temperature fluctuations. Radiation shielding must be provided when a
junction box is installed in the field. Care must also be taken that a thermal
gradient is not induced by conduction through the incoming wires. The
CR1000 can be used to measure the temperature gradients within the junction
box.

4.5 Pulse Count Measurement
FIGURE 4.5-1 shows a typical pulse sensor to CR1000 schematic. The
CR1000 features two dedicated pulse input channels, P1 and P2. It also
features eight digital I/O channels, C1 through C8, for measuring various pulse
output sensors. Activated by the PulseCount() instruction, dedicated 24-bit
counters on P1, P2 and C1 through C8 are used to accumulate all counts over
the user specified scan interval. PulseCount() instruction parameters specify
the pulse input type, channel used, and pulse output option.

Section 4. Sensor Support

4-30

Sensor

Pulse Channel

Ground

FIGURE 4.5-1. Schematic of a Pulse Sensor on a CR1000

The PulseCount() instruction cannot be used in a Slow Sequence
scan.

Execution of PulseCount() within a scan involves determining the accumulated
counts in each dedicated 24-bit counter since execution of the last
PulseCount(). PulseCount() parameter (POption) determines if the output will
be in counts (POption = 0) or frequency (POption = 1). Counts are the
preferred output option for measuring number of tips from a tipping bucket rain
gage, or the number of times a door opens. Many pulse sensors, such as
anemometers and flow meters, are calibrated in terms of frequency (Hz or
counts / second), and are best measured with the frequency option.

Resolution of the pulse counters is one count. Resolution of frequency is (1 /
measurement interval). For example, the frequency resolution of PulseCount()
returning a result every 1 second is 1 Hz. Accuracy is limited by a small scan
interval error of ±(3 ppm of scan interval + 10 μs) plus the measurement
resolution error of ± 1 Hz. The sum is essentially ± 1 Hz. Extending a 1
second measurement interval to 10 seconds, either by increasing the scan
interval or by averaging, improves the resulting frequency resolution from 1 Hz
to 0.1 Hz. Averaging can be accomplished by the Average(), AvgRun(), and
AvgSpa() instructions. Alternatively, entering a number greater than 1 in
(POption) parameter is to enter an averaging interval in milliseconds for a
direct running average computation.

4.5.1 Pulse Input Channels P1 and P2
Read more! Review pulse counter specifications in Section 3.3. Review
pulse counter programming in CRBASIC Help for the PulseCount()
instruction.

FIGURE 4.5-2 illustrates pulse input types measured by the CR1000.
Dedicated pulse input channels P1 and P2 can be configured to read high-
frequency pulses, low-level AC signals, or switch closure.

Input channel expansion devices for all input types are available
from Campbell Scientific.

NOTE

NOTE

Section 4. Sensor Support

4-31

FIGURE 4.5-2. Pulse Input Types

Maximum input voltage on pulse channels P1 and P2 is
±20 V. If pulse inputs of higher than ±20 V need to be
measured, third party external signal conditioners should
be employed. Contact a Campbell Scientific applications
engineer if assistance is needed. Under no circumstances
should voltages greater than ±50 V be measured.

4.5.1.1 High-frequency Pulse
Internal hardware routes high-frequency pulse to an inverting CMOS input
buffer with input hysteresis. The CMOS input buffer is guaranteed to be an
output zero level with its input ≥ 2.2 V, and guaranteed to be an output one
with its input ≤ 0.9 V. An RC input filter with approximately a 1 μs time
constant precedes the inverting CMOS input buffer, resulting in an amplitude
reduction of high frequency signals between the P1 and P2 terminal blocks and
the inverting CMOS input buffer as illustrated in FIGURE 4.5-3. For a 0 to 5
V square wave applied to P1 and P2, the maximum frequency that can be
counted in high-frequency mode is approximately 250 kHz.

0 2 .10 6 4 .10 6 6 .10 6 8 .10 6 1 .10 5

0

1

2

3

4

55.1

0.1−

Before

After

1 10 5−×0 time

FIGURE 4.5-3. Amplitude reduction of pulse-count waveform
before and after 1 μs time constant filter.

CAUTION

Section 4. Sensor Support

4-32

When a pulse channel is configured for high-frequency pulse, an internal 100
kΩ pull-up resistor to +5 V on the P1 or P2 input is employed. This pull-up
resistor accommodates open-collector (open-drain) output devices for high-
frequency input.

4.5.1.2 Low-Level AC
Rotating magnetic pickup sensors commonly generate AC output voltages
ranging from millivolts at low rotational speeds to several volts at high
rotational speeds. Channels P1 and P2 contain internal signal conditioning
hardware for measuring low-level AC output sensors. When configured for
low-level AC, P1 and P2 measure signals ranging from 20 mV RMS (±28 mV
peak) to 14 V RMS (±20 V peak). Internal AC coupling is incorporated in the
low-level AC hardware to eliminate DC offset voltages of up to ±0.5 V.

4.5.1.3 Switch Closure
Switch-closure mode of channels P1 and P2 measures switch closure events,
such as occur with a common tipping bucket rain gage. An internal 100 kΩ
pull-up resistor pulls the P1 or P2 input to +5 V with the switch open, whereas
a switch closure to ground pulls the P1 or P2 input voltage to 0 V. An internal
3.3 ms time constant RC debounce filter is used to eliminate multiple counts
from a single switch closure event.

4.5.2 Digital I/O Ports for Pulse Counting
Read more! Review digital I/O port specifications in Section 3.3. Review
pulse counter programming in CRBASIC Help for the PulseCount()
instruction.

Digital I/O Ports C1 – C8 can be configured for high-frequency input or switch
closure counting. Low-level AC mode is not available.

A 4 channel low-level AC signal conditioning peripheral
available from Campbell Scientific (LLAC4) generates up to 4
signal conditioned digital outputs that can be measured with
digital I/O ports.

Ports C1 – C8 have a small 25 ns input RC filter time constant between the
terminal block and the CMOS input buffer, allowing for higher frequency
operation (400 kHz maximum) as compared with the high-frequency pulse
mode of channels P1 and P2 (250 kHz maximum).

When configured for input, ports C1 – C8 each go into a digital CMOS input
buffer that recognizes an input voltage ≥ 3.8 V as a high (one) level, and an
input voltage ≤ 1.2 V as a low (zero) level. Voltage levels < -8.0 V and > 16 V
should not be connected to ports C1 – C8.

When using ports C1 – C8 for switch closure, an external pull-up resistor is
required to counteract the internal 100 kΩ pull-down resistor to ground. The
external pull-up must pull the input to > 3.8 V with the switch open for reliable
switch closure measurements. A pull-up resistor of ≤ 20 kΩ is recommended
when connecting to a +5 V supply, and a pull-up resistor of ≤ 150 kΩ is
recommended when connecting to a +12 V supply to provide adequate logic

NOTE

Section 4. Sensor Support

4-33

levels. Software switch debouncing of switch closure is incorporated in the
switch-closure mode for digital I/O parts C1 – C8.

Minimum and maximum input voltages on digital I/O
channels C1 – C8 is –8.0 V and +16 V, respectively. If
pulse inputs < -8.0 V or > +16 V are to be measured by C1
– C8, then external signal conditioning should be
employed. Contact a Campbell Scientific applications
engineer if assistance is needed. Under no circumstances
should voltages greater than ±50 V be measured.

4.6 Period Averaging Measurements
The CR1000 can measure the period of a signal on any single-ended analog
input channel (SE 1 -16). The specified number of cycles are timed with a
resolution of 92 ns, making the resolution of the period measurement 92 ns
divided by the number of cycles chosen.

Low-level signals are amplified prior to a voltage comparator. The internal
voltage comparator is referenced to the user-entered threshold. The threshold
parameter allows a user to reference the internal voltage comparator to voltages
other than 0 V. For example, a threshold of 2500 mV allows a 0 to 5 V digital
signal to be sensed by the internal comparator without the need of any
additional input conditioning circuitry. The threshold allows direct connection
of standard digital signals, but is not recommended for small amplitude sensor
signals. For sensor amplitudes less than 20 mV peak-to-peak, a DC blocking
capacitor is recommended to center the signal at CR1000 ground (threshold =
0) because of offset voltage drift along with limited accuracy (± 10 mV) and
resolution (1.2 mV) of a threshold other than 0. FIGURE 4.6-1 shows an
example circuit.

c

Vo s

Sensor
with
DC
offset

Silicon diodes
such as 1N4001

To single - ended
input

1µF

D1

D2
R

10k

FIGURE 4.6-1. Input conditioning circuit for low-level and high level period averaging.

The minimum pulse width requirements increase (maximum frequency
decreases) with increasing gain. Signals larger than the specified maximum for
a range will saturate the gain stages and prevent operation up to the maximum
specified frequency. As shown in FIGURE 4.6-1, back-to-back diodes are
recommended to limit large amplitude signals to within the input signal ranges.

CAUTION

Section 4. Sensor Support

4-34

Noisy signals with slow transitions through the voltage
threshold have the potential for extra counts around the
comparator switch point. A voltage comparator with 20 mV
of hysteresis follows the voltage gain stages. The effective
input referred hysteresis equals 20 mV divided by the
selected voltage gain. The effective input referred
hysteresis on the ± 25 mV range is 2 mV; consequently,
2 mV of noise on the input signal could cause extraneous
counts. For best results, select the largest input range
(smallest gain) that meets the minimum input signal
requirements.

4.7 SDI-12 Measurements
Read more! Section 11.3 SDI-12 Sensor Support and Section 10.11 Serial
Input/Output.

SDI-12 is a communications protocol developed to transmit digital data from
smart sensors to data acquisition units. It is a simple protocol, requiring only a
single communication wire. Typically, the data acquisition unit also supplies
power (12V and ground) to the SDI-12 sensor. The CR1000 is equipped with
four SDI-12 input channels (C1, C3, C5, C7) and an SDI12Recorder()
CRBASIC instruction.

4.8 RS-232 Measurements
Read more! See Section 11.8 Serial Input.

Many smart sensors output digital data through an RS-232 protocol. The
CR1000 is equipped to read the output of most RS-232 sensors on the 9-pin
RS-232 port or on four communications ports configured from digital I/O
ports, i.e., C1 & C2, C3 & C4, C5 & C6, C7 & C8. RS-232 data must usually
be read then parsed.

4.9 Field Calibration of Linear Sensor
Read more! Section 11.1 FieldCal has complete FieldCal information.

Calibration increases accuracy of a measurement device by adjusting its output,
or the measurement of its output, to match independently verified quantities.
Adjusting a sensor output directly is preferred, but not always possible or
practical. By adding FieldCal() or FieldCalStrain() instructions to the CR1000
program, a user can easily adjust the measured output of a linear sensors by
modifying multipliers and offsets.

CAUTION

5-1

Section 5. Measurement and Control
Peripherals

Peripheral devices are available for expanding the CR1000’s on-board input /
output capabilities. Classes of peripherals are discussed below according to
use. Some peripherals are designed as SDM (Synchronous Devices for
Measurement) devices. SDM devices are intelligent peripherals that receive
instruction from and send data to the CR1000 over a proprietary 3-wire serial
communications link utilizing channels C1, C2, and C3.

Read more! For complete information on available measurement and
control peripherals, go to www.campbellsci.com, or contact a Campbell
Scientific applications engineer.

5.1 Analog Input Expansion
Mechanical relay and solid state relay multiplexers are available to expand the
number of analog sensor inputs. Multiplexers are designed for single-ended,
differential, bridge resistance, or thermocouple inputs.

5.2 Pulse Input Expansion Modules
Pulse input expansion modules are available for switch closure, state, pulse
count and frequency measurements, and interval timing.

5.3 Serial Input Expansion Modules
Capturing input from intelligent serial output devices can be challenging.
Several Campbell Scientific serial I/O modules are designed to facilitate
reading and parsing serial data. Campbell Scientific recommends consulting
with an applications engineer when deciding which serial input module is
suited to a particular application.

5.4 Control Output
Controlling power to an external device is a common function of the CR1000.
Devices are available for binary (on / off) or analog (variable) control.

Many devices can conveniently be controlled with the SW-12 (Switched 12
Volt) terminal on the CR1000. Applications requiring more control channels
or greater power sourcing capacity can usually be satisfied by using one of
Campbell Scientific’s multiple-channel control modules or by using control
ports (C1 - C8) in conjunction with single-channel switching relays.

Section 5. Measurement and Control Peripherals

5-2

5.4.1 Binary Control
5.4.1.1 Digital I/O Ports

Each of eight digital I/O ports (C1 - C8) can be configured as an output port
and set low (0 V) or high (5 V) using the PortSet() or WriteIO() instructions.
A digital output port is normally used to operate an external relay driver circuit
because the port itself has very limited drive capability (2.0 mA minimum at
3.5 V).

5.4.1.2 Switched 12 V Control
The SW-12 port can be set low (0 V) or high (12 V) using the PortSet() or
SW12() instructions. The port is often used to control low power devices such
as sensors that require 12 V during measurement. Current sourcing must be
limited to 900 mA or less at 20°C.

A 12V switching circuit, driven by a digital I/O port, is also available from
Campbell Scientific.

The SW-12 supply is unregulated and can supply up to 900 mA
at 20°C and up to 630 mA at 50°C. A resettable polymeric fuse
protects against over-current. Reset is accomplished by
removing the load or turning off the SW-12 for several seconds.

5.4.1.3 Relays and Relay Drivers
Several relay drivers are manufactured by Campbell Scientific. Contact a
Campbell Scientific applications engineer for more information, or get more
information at www.campbellsci.com.

Compatible, inexpensive and reliable single-channel relay drivers for a wide
range of loads are available from various electronic vendors such as Crydom,
Newark, Mouser, etc.

5.4.1.4 Component Built Relays
FIGURE 5.4-1 shows a typical relay driver circuit in conjunction with a coil
driven relay which may be used to switch external power to some device. In
this example, when the control port is set high, 12 V from the datalogger passes
through the relay coil, closing the relay which completes the power circuit to a
fan, turning the fan on.

In other applications it may be desirable to simply switch power to a device
without going through a relay. FIGURE 5.4-2 illustrates a circuit for
switching external power to a device without going through a relay. If the
peripheral to be powered draws in excess of 75 mA at room temperature (limit
of the 2N2907A medium power transistor), the use of a relay (FIGURE 5.4-1)
would be required.

NOTE

Section 5. Measurement and Control Peripherals

5-3

FIGURE 5.4-1. Relay Driver Circuit with Relay

FIGURE 5.4-2. Power Switching without Relay

5.5 Analog Control / Output Devices
The CR1000 can scale measured or processed values and transfer these values
in digital form to a CSI analog output device. The analog output device then
performs a digital-to-analog conversion and outputs an analog voltage or
current signal. The output signal is maintained until updated by the datalogger.

5.6 Other Peripherals
5.6.1 TIMs

Terminal Input Modules are devices that provide simple measurement support
circuits in a convenient package. TIMs include voltage dividers for cutting the
output voltage of sensors to voltage levels compatible with the CR1000,
modules for completion of resistive bridges, and shunt modules for
measurement of analog current sensors.

Section 5. Measurement and Control Peripherals

5-4

5.6.2 Vibrating Wire
Vibrating wire modules interface vibrating wire transducers to the CR1000.

5.6.3 Low-level AC
Low-level AC input modules increase the number of low-level AC signals a
CR1000 can monitor by converting low-level AC to high-frequency pulse.

6-1

Section 6. CR1000 Power Supply
Reliable power is the foundation of a reliable data acquisition system. When
designing a power supply, consideration should be made regarding worst-case
power requirements and environmental extremes.

Excessive switching noise or AC ripple present on a DC power supply can
increase measurement noise. Noise sources include power transformers,
regulators, and grid or mains power inclusively. Using high quality power
regulators reduces noise due to power regulation. Utilizing 50 or 60 Hz
integration times for voltage measurements (see Section 4) improves rejection
of power supply induced noise. The CRBasic standard deviation instruction,
SDEV() can be used to evaluate measurement noise.

Contact Campbell Scientific if assistance in selecting a power supply is needed,
particularly with applications in extreme environments.

6.1 Power Requirement
The CR1000 operates from a DC power supply with voltage ranging from 9.6
to 16 V. It is internally protected against accidental polarity reversal. A
transient voltage suppressor (TVS) diode on the 12 V power input terminal
provides transient protection by clamping voltages in the range of 19 to 21 V.
Sustained input voltages in excess of 19 V can damage the TVS diode.

The 12V and SW12 terminals on the wiring panel are not
regulated by the CR1000; they obtain power directly from
the POWER IN terminal. When using the CR1000 wiring
panel to source power to other 12 V devices, be sure the
power supply regulates the voltage within the range
acceptable to the connected device.

6.2 Calculating Power Consumption
Read more! Section 3.3 Specifications -- System Power Requirements

System operating time for batteries can be determined by dividing the battery
capacity (ampere-hours) by the average system current drain (amperes). The
CR1000 typically draws 0.5 mA in the sleep state (with display off), 0.6 mA
with a 1 Hz sample rate, and >10 mA with a 100 Hz sample rate.

6.3 Campbell Scientific Power Supplies
Campbell Scientific carries several power supplies including alkaline and solar
options. Complete power supply information is available in manual or
brochure form at www.campbellsci.com.

6.4 Battery Connection
When connecting external power to the CR1000, remove the green POWER IN
connector from the CR1000 front panel. Insert the positive 12 V lead into the
terminal marked “12V”. Insert the ground lead in the terminal marked “G”

CAUTION

Section 6. CR1000 Power Supply

6-2

(ground). The CR1000 is internally protected against, but will not function
with, reversed external power polarity.

6.5 Vehicle Power Connections
If a CR1000 is powered by a motor vehicle supply, a second supply may be
needed. When starting the motor of the vehicle, the battery voltage may drop
below 9.6 V. This causes the CR1000 to stop measurements until the voltage
again equals or exceeds 9.6 V. A second supply can be provided to prevent
measurement lapses during vehicle starting. FIGURE 6.5-1 illustrate how a
second power supply should be connected to the CR1000. The diode OR
connection causes the supply with the largest voltage to power the CR1000 and
prevents the second backup supply from attempting to power the vehicle.

CR1000
Panel

+12V

G

FIGURE 6.5-1. Connecting CR1000 to Vehicle Power Supply

7-1

Section 7. Grounding
Grounding the CR1000 and its peripheral devices and sensors is critical in all
applications. Proper grounding will ensure the maximum ESD (electrostatic
discharge) protection and higher measurement accuracy.

7.1 ESD Protection
ESD (electrostatic discharge) can originate from several sources. The most
common, and most destructive, are primary and secondary lightning strikes.
Primary lightning strikes hit the datalogger or sensors directly. Secondary
strikes induce a voltage in power lines or sensor wires.

The primary devices for protection against ESD are gas-discharge tubes
(GDT). All critical inputs and outputs on the CR1000 are protected with GDTs
or transient voltage suppression diodes. GDTs fire at 150 V to allow current to
be diverted to the earth ground lug. To be effective, the earth ground lug must
be properly connected to earth (chassis) ground. As shown in FIGURE 7.1-1,
the power ground and signal ground are independent lines until joined inside
the CR1000.

Section 7. Grounding

7-2

FIGURE 7.1-1. Schematic of CR1000 Grounds

The 9-pin serial I/O ports on the CR1000 are another path for transients.
Communications paths such a telephone or short-haul modem lines should
have spark gap protection. Spark gap protection is often an option with these
products, so it should always be requested when ordering. Spark gaps for these
devices must be connected to either the CR1000 earth ground lug, the
enclosure ground, or to the earth (chassis) ground.

A good earth (chassis) ground will minimize damage to the datalogger and
sensors by providing a low resistance path around the system to a point of low
potential. Campbell Scientific recommends that all dataloggers be earth
(chassis) grounded. All components of the system (dataloggers, sensors,
external power supplies, mounts, housings, etc.) should be referenced to one
common earth (chassis) ground.

In the field, at a minimum, a proper earth ground will consist of a 6 to 8 foot
copper sheathed grounding rod driven into the earth and connected to the
CR1000 Ground Lug with a 12 AWG wire. In low conductive substrates, such
as sand, very dry soil, ice, or rock, a single ground rod will probably not

Tie analog signal
shields and returns to
grounds () located in
analog input terminal
strips.

Tie 5 V, SW-12, 12 V and C1-C8
returns into power grounds (G).

Star Ground at
Ground Lug

External
Power Input

Tie pulse-counter returns into grounds () in pulse-counter terminal strip. Large
excitation return currents may also be tied into this ground in order to minimize
induced single-ended offset voltages in half bridge measurements.

Section 7. Grounding

7-3

provide an adequate earth ground. For these situations, consult the literature on
lightning protection or contact a qualified lightning protection consultant.

In vehicle applications, the earth ground lug should be firmly attached to the
vehicle chassis with 12 AWG wire or larger.

In laboratory applications, locating a stable earth ground is challenging, but
still necessary. In older buildings, new AC receptacles on older AC wiring
may indicate that a safety ground exists when in fact the socket is not
grounded. If a safety ground does exist, it is good practice to verify that it
carries no current. If the integrity of the AC power ground is in doubt, also
ground the system through the buildings, plumbing or another connection to
earth ground.

7.2 Common Mode Range
To make a differential measurement, voltage inputs must be within the CR1000
common mode range of ±5 V. The common mode range is the voltage range,
relative to CR1000 ground, within which both inputs of a differential
measurement must lie, in order for the differential measurement to be made.
For example, if the high side of a differential input is at 4 V and the low side is
at 3 V relative to CR1000 ground, there is no problem. A measurement made
on the ±5000 mV range will return 1000 mV. However, if the high input is at
5.8 V and the low input is at 4.8 V, the measurement can not be made because
the high input is outside of the ±5 V common mode range. The CR1000
indicates the overrange by returning NAN (not-a-number). Sensors that have a
floating output, or are not referenced to ground through a separate connection,
may need the CR1000 to use a voltage range “C” option to pull the sensor into
common mode range or to have the one side of the differential input (usually
the low input) connected to ground to ensure the signal remains within the
common mode range.

Common mode range can be exceeded when the CR1000 is measuring the
output from a sensor which has its own grounded power supply and the low
side of the signal is referenced to the sensor’s power supply ground. If the
CR1000 ground and the sensor ground are at sufficiently different potentials,
the signal will exceed the common mode range. To solve this problem, the
sensor power ground and the CR1000 ground should be connected, creating
one ground for the system.

Problems with exceeding common mode range can be encountered when the
CR1000 is used to read the output of external signal conditioning circuitry if a
good ground connection does not exist between the external circuitry and the
CR1000. When operating where AC power is available, it is not always safe to
assume that a good ground connection exists through the AC wiring. If a
CR1000 is used to measure the output from a laboratory instrument (both
plugged into AC power and referencing ground to outlet ground), the best
practice is to run a ground wire between the CR1000 and the external circuitry.

Section 7. Grounding

7-4

7.3 Single-Ended Measurement Reference
Low-level single-ended voltage measurements are sensitive to ground potential
fluctuations. The grounding scheme in the CR1000 has been designed to
eliminate ground potential fluctuations due to changing return currents from 12
V, SW-12, 5 V, and the control ports. This is accomplished by utilizing
separate signal grounds () and power grounds (G). To take advantage of
this design, observe the following grounding rule:

Always connect a device’s ground next to the active terminal
associated with that ground. Several ground wires can be
connected to the same ground terminal.

Examples:

1. Connect 5 Volt, 12 Volt, and control grounds to G terminals.

2. Connect excitation grounds to the closest terminal on the excitation
terminal block.

3. Connect the low side of single-ended sensors to the nearest terminal on
the analog input terminal blocks.

4. Connect shield wires to the nearest terminal on the analog input
terminal blocks.

If offset problems occur because of shield or ground leads with large current
flow, tying the problem leads into the terminals next to the excitation and
pulse-counter channels should help. Problem leads can also be tied directly to
the ground lug to minimize induced single-ended offset voltages.

7.4 Ground Potential Differences
Because a single-ended measurement is referenced to CR1000 ground, any
difference in ground potential between the sensor and the CR1000 will result in
a measurement error. Differential measurements MUST be used when the
input ground is known to be at a different ground potential from CR1000
ground.

Ground potential differences are a common problem in application measuring
full bridge sensors (strain gages, pressure transducers, etc), and thermocouples
when used to measure soil temperature.

7.4.1 Soil Temperature Thermocouple
If the measuring junction of a copper-constantan thermocouple being used to
measure soil temperature is not insulated, and the potential of earth ground is 1
mV greater at the sensor than at the point where the CR1000 is grounded, the
measured voltage will be 1 mV greater than the thermocouple output, or
approximately 25 oC high.

NOTE

Section 7. Grounding

7-5

7.4.2 External Signal Conditioner
External signal conditioners, e.g. an infrared gas analyzer (IRGA), are
frequently used to make measurements and send analog information to the
CR1000. These instruments are often powered by the same AC line source as
the CR1000. Despite being tied to the same ground, differences in current
drain and lead resistance result in different ground potential at the two
instruments. For this reason, a differential measurement should be made on the
analog output from the external signal conditioner.

7.5 Ground Looping in Ionic Measurements
When measuring soil moisture blocks or water conductivity, the potential
exists for a ground loop which can adversely affect the measurement. This
ground loop arises because the soil and water provide an alternate path for the
excitation to return to CR1000 ground, and can be represented by the model
diagrammed in FIGURE 7.5-1.

FIGURE 7.5-1. Model of Resistive Sensor with Ground Loop

In Equation 14.5-1, Vx is the excitation voltage, Rf is a fixed resistor, Rs is the
sensor resistance, and RG is the resistance between the excited electrode and
CR1000 earth ground. With RG in the network, the measured signal is:

 () Gfsfs

s
x1 R/RRRR

RVV
++

= [14.5-1]

RsRf/RG is the source of error due to the ground loop. When RG is large, the
equation reduces to the ideal. The geometry of the electrodes has a great effect
on the magnitude of this error. The Delmhorst gypsum block used in the 227
probe has two concentric cylindrical electrodes. The center electrode is used
for excitation; because it is encircled by the ground electrode, the path for a
ground loop through the soil is greatly reduced. Moisture blocks which consist
of two parallel plate electrodes are particularly susceptible to ground loop
problems. Similar considerations apply to the geometry of the electrodes in
water conductivity sensors.

The ground electrode of the conductivity or soil moisture probe and the
CR1000 earth ground form a galvanic cell, with the water/soil solution acting
as the electrolyte. If current was allowed to flow, the resulting oxidation or
reduction would soon damage the electrode, just as if DC excitation was used
to make the measurement. Campbell Scientific probes are built with series
capacitors in the leads to block this DC current. In addition to preventing

Section 7. Grounding

7-6

sensor deterioration, the capacitors block any DC component from affecting
the measurement.

8-1

Section 8. CR1000 Configuration
The CR1000 may require changes to factory default settings depending on the
application. Most settings concern telecommunications between the CR1000
and a network or PC.

Good News! The CR1000 is shipped factory ready with all settings and
firmware necessary to communicate with a PC via RS-232 and to accept
and execute user application programs. OS upgrades are occasionally
made available at www.campbellsci.com.

8.1 DevConfig
DevConfig (Device Configuration Utility) is the preferred tool for configuring
the CR1000. It is made available as part of LoggerNet, PC400, and at
www.campbellsci.com. Most settings can also be entered through the
CR1000KD (Section 17.6 Settings).

Features of DevConfig include:

• Communicates with devices via direct RS-232 only.

• Sends operating systems to supported device types.

• Sets datalogger clocks and sends program files to dataloggers.

• Identifies operating system types and versions.

• Provides a reporting facility wherein a summary of the current
configuration of a device can be shown, printed or saved to a file. The file
can be used to restore settings, or set settings in like devices.

• Provides a terminal emulator useful in configuring devices not directly
supported by DevConfig’s graphical user interface.

• Shows Help as prompts and explanations. Help for the appropriate
settings for a particular device can also be found in the user’s manual for
that device.

• Updates from Campbell Scientific's web site.

As shown in FIGURE 8.1-1, the DevConfig window is divided into two main
sections: the device selection panel on the left side and tabs on the right side.
After choosing a device on the left, choose from the list of the serial ports
(COM1, COM2, etc.) installed on the PC. A selection of baud rates is offered
only if the device supports more than one baud rate. The page for each device
presents instructions to set up the device to communicate with DevConfig.
Different device types offer one or more tabs on the right.

Section 8. CR1000 Configuration

8-2

FIGURE 8.1-1. DevConfig CR1000 Facility

When the Connect button is pressed, the device type, serial port, and baud rate
selector controls become disabled and, if DevConfig is able to connect to the
CR1000, the button will change from "Connect" to "Disconnect".

8.2 Sending the Operating System
8.2.1 Sending OS with DevConfig

The CR1000 is shipped with the operating system pre-loaded. However, OS
updates are made available at www.campbellsci.com and can be sent to the
CR1000. Using DevConfig to send an operating system is described below
using FIGURE 8.2-1.

Sending an operating system with DevConfig will erase all
existing data and reset all settings to factory defaults.

CAUTION

Section 8. CR1000 Configuration

8-3

FIGURE 8.2-1. DevConfig OS download window for CR1000.

The text at right gives the instructions for sending the OS. Follow these
instructions.

When the Start button is clicked, DevConfig offers a file open dialog box that
prompts for the operating system file (*.obj file). When the CR1000 is then
powered-up, DevConfig starts to send the operating system.

When the operating system has been sent, a message dialog will appear similar
to the one shown in FIGURE 8.2-2.

FIGURE 8.2-2. Dialog Box Confirming a Successful OS Download

Section 8. CR1000 Configuration

8-4

The information in the dialog helps to corroborate the signature of the
operating system sent.

8.2.2 Sending OS to Remote CR1000
Operating systems can be sent remotely using the Program Send feature in
LoggerNet, PC400, and PC200W. Sending an OS via Program Send retains
settings unless changes in the new OS prevent it. To ensure a remote OS
download does not alter telecommunications settings, a program named
default.cr1 can be sent prior to the OS being sent.

Assuming default.cr1 is a small program loading a minimum of settings, after
sending the OS, default.cr1 runs automatically and sets all pertinent settings to
ensure continued communications with the base PC. Default.CR1 will also
ensure that a non-compiling CRBASIC program does not lock out a remote
user.

Depending on the method and quality of
telecommunications, sending an OS via Program Send
may take an inordinate amount of time.

8.2.3 Sending OS Using CF Card
Refer to Section 12.6 File Control.

8.3 Settings via DevConfig
The CR1000 has a number of properties, referred to as “settings”, some of
which are specific to the PakBus communications protocol.

Read more! PakBus is discussed in Section 14 PakBus Overview and the
PakBus Networking Guide available at www.campbellsci.com.

DevConfig | Settings Editor tab provides access to most of the PakBus settings,
however, the Deployment tab makes configuring most of these settings easier.

CAUTION

Section 8. CR1000 Configuration

8-5

FIGURE 8.3-1. DevConfig Settings Editor

As shown in FIGURE 8.3-1, the top of the Settings Editor is a grid that allows
the user to view and edit the settings for the device. The grid is divided into
two columns with the setting name appearing in the left hand column and the
setting value appearing in the right hand column. Change the currently
selected cell with the mouse or by using up-arrow and down-arrow keys as
well as the Page-Up and Page-Down keys. When clicking in the setting names
column, the value cell associated with that name will automatically be made
active. Edit a setting by selecting the value, pressing the F2 key or by double
clicking on a value cell with the mouse. The grid will not allow read-only
settings to be edited.

The bottom of the Settings Editor displays help for the setting that has focus on
the top of the screen.

Once a setting is changed, click Apply or Cancel. These buttons will only
become enabled after a setting has been changed. If the device accepts the
settings, a configuration summary dialogue is shown (FIGURE 8.3-2) that
gives the user a chance to save and print the settings for the device.

Section 8. CR1000 Configuration

8-6

FIGURE 8.3-2. Summary of CR1000 Configuration

Clicking the Factory Defaults button on the Settings Editor will send a
command to the device to revert to its factory default settings. The reverted
values will not take effect until the final changes have been applied. This
button will remain disabled if the device does not support the DevConfig
protocol messages.

Clicking Save on the summary screen will save the configuration to an XML
file. This file can be used to load a saved configuration back into a device by
clicking Read File and Apply.

Section 8. CR1000 Configuration

8-7

8.3.1 Deployment Tab

FIGURE 8.3-3. DevConfig Deployment Tab

As shown in FIGURE 8.3-3, the Deployment tab allows the user to configure
the datalogger prior to deploying it. Deployment tab settings can also be
accessed through the Setting Editor tab and the Status table.

8.3.1.1 Datalogger Sub-Tab
Serial Number displays the CR1000 serial number. This setting is set at the
factory and cannot be edited.

OS Version displays the operating system version that is in the CR1000. The
default station name is the CR1000 serial number.

Station Name displays the name that is set for this station.

PakBus Address allows users to set the PakBus address of the datalogger.
The allowable range is between 1 and 4094. Each PakBus device should have
a unique PakBus address. Addresses >3999 force other PakBus devices to
respond regardless of their respective PakBus settings. See the PakBus
Networking Guide for more information.

Security – See Section 3.1.7

Section 8. CR1000 Configuration

8-8

8.3.1.2 Ports Settings Sub-Tab
As shown in FIGURE 8.3-4, the port settings tab has the following settings.

FIGURE 8.3-4. DevConfig Deployment | Ports Settings Tab

Read more! PakBus Networking Guide available at www.campbellsci.com.

Selected Port specifies the datalogger serial port to which the beacon interval
and hello setting values will be applied.

Beacon Interval sets the interval (in seconds) on which the datalogger will
broadcast beacon messages on the port specified by Selected Port.

Verify Interval specifies the interval (in seconds) at which the datalogger will
expect to have received packets from neighbors on the port specified by
Selected Port. A value of zero (default) indicates that the datalogger has no
neighbor list for this port.

Neighbors List, or perhaps more appropriately thought of as the “allowed
neighbors list”, displays the list of addresses that this datalogger expects to find
as neighbors on the port specified by Selected Port. As items are selected in
this list, the values of the Begin and End range controls will change to reflect
the selected range. Multiple lists of neighbors can be added on the same port.

Begin and End Range are used to enter a range of addresses that can either be
added to or removed from the neighbors list for the port specified by Selected
Port. As users manipulate these controls, the Add range and Remove Range
buttons will be enabled or disabled depending on the relative values in the
controls and whether the range is present in or overlaps with the list of address

Section 8. CR1000 Configuration

8-9

ranges already set up. These controls will be disabled if the Verify Interval
value is set to zero.

Add Range will cause the range specified in the Begin and End range to be
added to the list of neighbors to the datalogger on the port specified by
Selected Port. This control will be disabled if the value of the Verify Interval
is zero or if the end range value is less than the begin range value.

Remove Range will remove the range specified by the values of the Begin and
End controls from the list of neighbors to the datalogger on the port specified
by Selected Port. This control will be disabled if the range specified is not
present in the list or if the value of Verify Interval is set to zero.

Help is displayed at the bottom of the Deployment tab. When finished, Apply
the settings to the datalogger. The Summary window will appear. Save or
Print the settings to archive or to use as a template for another datalogger.

Cancel causes the datalogger to ignore the changes. Read File provides the
opportunity to load settings saved previously from this or another similar
datalogger. Changes loaded from a file will not be written to the datalogger
until Apply is clicked.

8.3.1.3 Advanced Sub-Tab

FIGURE 8.3-5. DevConfig Deployment | Advanced Tab

Is Router allows the datalogger to act as a PakBus router.

PakBus Nodes Allocation indicates the maximum number of PakBus devices
the CR1000 will communicate with if it is set up as a router. This setting is
used to allocate memory in the CR1000 to be used for its routing table.

Section 8. CR1000 Configuration

8-10

8.3.2 Logger Control Tab

FIGURE 8.3-6. DevConfig Logger Control Tab

The clock in the PC and the datalogger will be checked every second and the
difference displayed. The System Clock Setting allows entering what offset,
if any, to use with respect to standard time (Local Daylight Time or UTC,
Greenwich mean time). The value selected for this control will be remembered
between sessions. Clicking the Set Clock button will synchronize the station
clock to the current computer system time.

Current Program displays the current program known to be running in the
datalogger. This value will be empty if there is no current program.

The Last Compiled field displays the time when the currently running
program was last compiled by the datalogger. As with the Current Program
field, this value will be read from the datalogger if it is available.

Last Compile Results shows the compile results string as reported by the
datalogger.

The Send Program button presents an open file dialog from which to select a
program file to be sent to the datalogger. The field above the button will be
updated as the send operation progresses. When the program has been sent the
Current Program, Last Compiled, and Last Compile Results fields will be filled
in.

Section 8. CR1000 Configuration

8-11

8.4 Settings via Terminal Emulator
CR1000 Terminal Mode is designed to aid Campbell Scientific engineers in
operating system development. It has some features useful to users. However,
it is frequently modified and cannot be relied upon to have the same features or
formats from version to version of the OS.

DevConfig Terminal tab offers a terminal emulator that can be used to access
the CR1000 Terminal Mode. After clicking on the DevConfig Terminal
Emulator tab, press “Enter” several times until the CR1000 terminal mode
prompt “CR1000>” is returned. Terminal mode commands consist of a single
character and “Enter”. Sending an “H” and “Enter” will return a list of the
terminal commands. HyperTerminal, a communications tool available with
many installations of Windows PC operating systems, can also be used to
access Terminal Mode.

FIGURE 8.4-1. DevConfig Terminal Emulator Tab

ESC or a 40-second timeout will terminate on-going commands.

Section 8. CR1000 Configuration

8-12

9-1

Section 9. CR1000 Programming
9.1 Inserting Comments into Program

Comments are non-functioning text placed within the body of a program to
document or clarify program algorithms.

As shown in EXAMPLE 9.1-1, comments are inserted into a program by
preceding the comment with a single quote ('). Comments can be entered
either as independent lines or following CR1000 code. When the CR1000
compiler sees a single quote ('), it ignores the rest of the line.

EXAMPLE 9.1-1. CRBASIC Code: Inserting Comments

'Declaration of variables starts here.
Public Start(6) 'Declare the start time array

9.2 Uploading CR1000 Programs
The CR1000 requires a program be sent to its memory to direct measurement,
processing, and data storage operations. Programs are sent with PC200W,
PC400, or LoggerNet support software. Programs can also be sent from a CF
card.

Read more! See 12.6 File Control and the CF card storage module
manual.

Tips from the field—using the default .cr1 file: “It has happened once again, a
user sends a bad program to their remote CR1000 and locks it up. This
requires a site visit because they were using SW12 to turn on / off their modem
and it has turned off. There is a solution... the default.cr1 file. This program,
should it exist on the logger, will run if a program that won't compile is sent.”

For more information on default.cr1, go to Section 8.2.2 Sending OS to
Remote CR1000.

9.3 Writing CR1000 Programs
Programs are created with either Short Cut, CRBASIC Editor, or Transformer.
Short Cut is available at no charge at www.campbellsci.com. CRBASIC
Editor and Transformer are programs in PC400 and LoggerNet Datalogger
Support Software Suites.

“Transformer”, a utility included with PC400 and LoggerNet
Software, converts most CR10X datalogger code to CR1000
datalogger code.

NOTE

http://www.campbellsci.com/�

Section 9. CR1000 Programming

9-2

9.3.1 Short Cut Editor and Program Generator
Short Cut is easy-to-use menu-driven software that presents the user with lists
of predefined measurement, processing, and control algorithms from which to
choose. The user makes choices and Short Cut writes the CRBASIC code
required to perform the tasks. Short Cut creates a wiring diagram to simplify
connection of sensors and external devices. Section 2, Quickstart Tutorial,
works through a measurement example using Short Cut.

For many complex applications, Short Cut is still a good place to start. When
as much information as possible is entered, Short Cut will create a program
template from which to work, already formatted with most of the proper
structure, measurement routines, and variables. The program can then be
edited further using CRBASIC Program Editor.

9.3.2 CRBASIC Editor
CR1000 application programs are written in a variation of BASIC (Beginner’s
All-purpose Symbolic Instruction Code) computer language, CRBASIC
(Campbell Recorder BASIC). CRBASIC Editor is a text editor that facilitates
creation and modification of the ASCII text file that constitutes the CR1000
application program. CRBASIC Editor is available as part of PC400, RTDAQ,
or LoggerNet datalogger support software packages.

Fundamental elements of CRBASIC include:

• Variables - named packets of CR1000 memory into which are stored
values that normally vary during program execution. Values are typically
the result of measurements and processing. Variables are given an
alphanumeric name and can be dimensioned into arrays of related data.

• Constants - discrete packets of CR1000 memory into which are stored
specific values that do not vary during program executions. Constants are
given alphanumeric names and assigned values at the beginning
declarations of a CRBASIC program.

Keywords and predefined constants are reserved for internal
CR1000 use. If a user programmed variable happens to be a
keyword or predefined constant, a runtime or compile error will
occur. To correct the error, simply change the variable name by
adding or deleting one or more letters, numbers, or the
underscore (_) from the variable name, then recompile and
resend the program. CRBASIC Help provides a list of keywords
and pre-defined constants.

• Common instructions - Instructions and operators used in most BASIC
languages, including program control statements, and logic and
mathematical operators.

• Special instructions - Instructions unique to CRBASIC, including
measurement instructions that access measurement channels, and
processing instructions that compress many common calculations used in
CR1000 dataloggers.

These four elements must be properly placed within the program structure.

NOTE

Section 9. CR1000 Programming

9-3

9.3.3 Transformer
This section is not yet available.

9.4 Numerical Formats
Four numerical formats are supported by CRBASIC. Most common is the use
of base 10 numbers. Scientific notation, binary, and hexadecimal formats may
also be used, as shown in TABLE 9.4-1. Only standard base 10 notation is
supported by Campbell Scientific hardware and software displays.

TABLE 9.4-1. Formats for Entering Numbers in CRBASIC

Format Example Value
Standard 6.832 6.832
Scientific notation 5.67E-8 5.67X10-8
Binary: &B1101 13
Hexadecimal &HFF 255

Binary format is useful when loading the status (1 = high, 0 = low) of multiple
flags or ports into a single variable, e.g., storing the binary number
&B11100000 preserves the status of flags 8 through 1. In this case, flags 1 - 5
are low, 6 - 8 are high. Program Code EXAMPLE 9.4-1 shows an algorithm
that loads binary status of flags into a LONG integer variable.

EXAMPLE 9.4-1. CRBASIC Code: Program to load binary information into a single variable.

Public FlagInt As Long

Public Flag(8) As Boolean
Public I

DataTable (FlagOut,True,-1)
 Sample (1,FlagInt,UINT2)
EndTable

BeginProg
 Scan (1,Sec,3,0)
 FlagInt = 0
 For I = 1 To 8
 If Flag(I) = true then
 FlagInt = FlagInt + 2^(I-1)
 EndIf
 Next I
 CallTable FlagOut
 NextScan
EndProg

Section 9. CR1000 Programming

9-4

9.5 Structure
TABLE 9.5-1 delineates CRBASIC program structure:

TABLE 9.5-1. CRBASIC Program Structure

Declarations Define datalogger memory usage. Declare
constants, variables, aliases, units, and data
tables.

Declare constants List fixed constants

Declare Public variables List / dimension variables viewable during
program execution

Dimension variables List / dimension variables not viewable during
program execution.

Define Aliases Assign aliases to variables.

Define Units Assign engineering units to variable (optional).
Units are strictly for documentation. The
CR1000 makes no use of Units nor checks
Unit accuracy.

Define data tables. Define stored data tables

Process/store trigger Set triggers when data should be stored.
Triggers may be a fixed interval, a condition,
or both.

Table size Set the size of a data table

Other on-line storage
devices

Send data to a CF card if available

Processing of Data List data to be stored in the data table, e.g.
samples, averages, maxima, minima, etc.

Processes or calculations repeated during
program execution can be packaged in a
subroutine and called when needed rather
than repeating the code each time.

Begin Program Begin Program defines the beginning of
statements defining datalogger actions.

Set scan interval The scan sets the interval for a series of
measurements

Measurements Enter measurements to make

Processing Enter any additional processing

Call Data Table(s) Declared data tables must be called to process
and store data

Initiate controls Check measurements and initiate controls if
necessary

NextScan Loop back to Set Scan and wait for the next scan

End Program End Program defines the ending of statements
defining datalogger actions.

Section 9. CR1000 Programming

9-5

EXAMPLE 9.5-1 demonstrates the proper structure of a CRBASIC program.

EXAMPLE 9.5-1. CRBASIC Code: Proper Program Structure

‘Declarations

‘Define constants
Const RevDiff=1
Const Del=0 'default
Const Integ=250
Const Mult=1
Const Offset=0

‘Define public variables
Public RefTemp
Public TC(6)

‘Define units
Units RefTemp=degC
Units TC=DegC

‘Define data tables
DataTable (Temp,1,2000)
 DataInterval (0,10,min,10)
 Average (1,RefTemp,FP2,0)
 Average (6,TC(),FP2,0)
EndTable

‘Begin Program
BeginProg

‘Set scan interval
 Scan (1,Sec,3,0)

‘Measurements
 PanelTemp (RefTemp, 250)
 TCDiff (TC(),6,mV2_5C ,1,TypeT,RefTemp,RevDiff,Del,Integ,Mult,Offset)

‘Processing (None)

‘Call data table
 CallTable Temp

‘Initiate controls (None)

‘Loop to next scan
 NextScan

‘End Program
End Prog

Declare constants

Declare public variables,
dimension array, and
declare units.

Define Data Table

Declarations

Call Data Table

Scan loop

Measure

Section 9. CR1000 Programming

9-6

9.6 Declarations
Constants (and pre-defined constants), Public variables, Dim variables, Aliases,
Units, Data Tables, Subroutines are declared at the beginning of a CRBASIC
program.

9.6.1 Variables
A variable is a packet of memory, given an alphanumeric name, through which
pass measurements and processing results during program execution.
Variables are declared either as Public or Dim at the discretion of the
programmer. Public variables can be viewed through the CR1000KD or
software numeric monitors. Dim variables cannot.

9.6.1.1 Arrays
When a variable is declared, several variables of the same root name can also
be declared. This is done by placing a suffix of “(x)” on the alphanumeric
name, which creates an array of x number of variables that differ only by the
incrementing number in the suffix. For example, rather than declaring four
similar variables as follows,

Public TempC1
Public TempC2
Public TempC3
Public TempC4

simply declare a variable array as shown below:

Public TempC(4),

This creates in memory the four variables TempC(1), TempC(2), TempC(3),
and TempC(4).

A variable array is useful in program operations that affect many variables in
the same way. EXAMPLE 9.6-1 shows program code using a variable array to
reduce the amount of code required to convert four temperatures from °C to °F.

EXAMPLE 9.6-1. CRBASIC Code: Using a variable array in calculations.

Public TempC(4)
Public TempF(4)
Dim T

BeginProg
 Scan (1,Sec,0,0)
 Therm107 (TempC(),4,1,Vx1,0,250,1.0,0)
 For T = 1 To 4
 TempF(T) = TempC(T) * 1.8 + 32
 Next
 NextScan
EndProg

Section 9. CR1000 Programming

9-7

9.6.1.2 Dimensions
Occasionally, a multi-dimensioned array is required by an application.
Dimensioned arrays can be thought of just as distance, area, and volume
measurements are thought of. A single dimensioned array, declared as
VariableName(x), can be thought of as x number of variables is a series. A
two-dimensional array, declared as:

Public (or Dim) VariableName(x,y),

can be thought of as (x) * (y) number of variables in a square x-by-y matrix.
Three-dimensional arrays (VariableName (x,y,z)) have (x) * (y) * (z) number
of variables in a cubic x-by-y-by-z matrix. Dimensions greater than three are
not permitted by CRBASIC.

Strings can be declared at a maximum of two dimensions. The third dimension
is used internally for accessing characters within a string.

9.6.1.3 Data Types
Variables and stored data can be configured with various data types to optimize
program execution and memory usage.

The declaration of variables (via the DIM or the PUBLIC statement) allows an
optional type descriptor AS that specifies the data type. The default data type,
without a descriptor, is IEEE4 floating point (FLOAT). Variable data types are
STRING and three numeric types: FLOAT, LONG, and BOOLEAN. Stored
data has additional data type options FP2, UINT2, BOOL8, and NSEC.
EXAMPLE 9.6-2 shows these in use in the declarations and output sections of
a CRBASIC program.

EXAMPLE 9.6-2. CRBASIC Code: Data Type Declarations

'Float Variable Examples
Public Z
Public X As Float
Public CR1000Time As Long

'Long Variable Example
Public PosCounter As Long
Public PosNegCounter As Long

'Boolean Variable Examples
Public Switches(8) As Boolean
Public FLAGS(16) As Boolean

'String Variable Example
Public FirstName As String * 16 'allows a string up to 16 characters long

DataTable (TableName,True,-1)
 'FP2 Data Storage Example
 Sample (1,Z,FP2)

 'IEEE4 / Float Data Storage Example
 Sample (1,X,IEEE4)

Section 9. CR1000 Programming

9-8

 'UINT2 Data Storage Example
 Sample (1,PosCounter,UINT2)
 'LONG Data Storage Example
 Sample (1,PosNegCounter,Long)

 'STRING Data Storage Example
 Sample (1,FirstName,String)

 'BOOLEAN Data Storage Example
 Sample (8,Switches(),Boolean)

 'BOOL8 Data Storage Example
 Sample (16,FLAGS(),Bool8)

 'NSEC Data Storage Example
 Sample (1,CR1000Time,Nsec)
EndTable

TABLE 9.6-1 lists details of available data types.

TABLE 9.6-1. Data Types

Code Data Format Where Used Word Size Range Resolution

FP2 Campbell
Scientific Floating
Point

Output Data
Storage Only

2 bytes ±7999 13 bits
(about 4 digits)

IEEE4 or
FLOAT

IEEE 4 Byte
Floating Point

Output Data
Storage /
Variables

4 bytes ±1.4 x 10-45 to
±3.4 x 1038

24 bits
(about 7 digits)

LONG 4 Byte Signed
Integer

Output Data
Storage /
Variables

4 bytes -2,147,483,648 to
+2,147,483,647

1 bit (1)

UINT2 2 Byte Unsigned
Integer

Output Data
Storage Only

2 bytes 0 to 65535 1 bit (1)

BOOLEAN 4 byte Signed
Integer

Output Data
Storage /
Variables

4 bytes 0, -1 True or False
(-1 or 0)

BOOL8 1 byte Boolean Output Data
Storage Only

1 byte 0, -1 True or False
(-1 or 0)

NSEC Time Stamp Output Data
Storage Only

8 byte seconds since 1990 4 bytes of
nanoseconds
in the second

STRING ASCII String Output Data
Storage /
Variables

Set by
program

Section 9. CR1000 Programming

9-9

9.6.1.4 Data Type Operational Detail
FP2 Default CR1000 data type for stored data. While IEEE 4 byte

floating point is used for variables and internal calculations, FP2 is
adequate for most stored data. FP2 provides 3 or 4 significant digits
of resolution, and requires half the memory as IEEE 4.

TABLE 9.6-2. Resolution and Range Limits of FP2 Data

Zero Minimum Magnitude Maximum Magnitude
0.000 ±0.001 ±7999.

 The resolution of FP2 is reduced to 3 significant digits when the first

(left most) digit is 8 or greater (TABLE 9.6-2). Thus, it may be
necessary to use IEEE4 format or an offset to maintain the desired
resolution of a measurement. For example, if water level is to be
measured and stored to the nearest 0.01 foot, the level must be less
than 80 feet for low-resolution format to display the 0.01-foot
increment. If the water level is expected to range from 50 to 90 feet
the data can be formatted as IEEE4.

TABLE 9.6-3. FP2 Decimal Location

Absolute Value Decimal Location

 0 - 7.999 X.XXX

 8 - 79.99 XX.XX

 80 - 799.9 XXX.X

 800 - 7999. XXXX.

IEEE4 IEEE Standard 754.

Advantages: Industry standard.

Disadvantages: Uses twice the storage space of FP2. See Section
9.13.1 for limitations in using IEEE4 in arithmetic.

LONG Advantages: Speed -- the CR1000 can do math on integers faster than
with floats. Resolution-- LONG has 31 bits compared to 24-bits in
IEEE4.

Disadvantages: In most applications, it is not suitable for stored
output data since any fractional portion of the value is lost.

UINT2 Typical uses are for efficient storage of totalized pulse counts, port
status (e.g. 16 ports on an SDM-IO16 stored in one variable) or
integer values that store binary flags.

Float values are converted to integer UINT2 values as if using the
INT function. Values may need to be range checked since values
outside the range of 0-65535 will yield UINT2 data that is probably
unusable. NAN values are stored as 65535.

Section 9. CR1000 Programming

9-10

Boolean Boolean variables are typically used for flags and to represent
conditions or hardware that have only two states such as flags and
control ports. A Boolean variable uses the same 4-byte integer format
as a LONG but can be set to only one of two values. To save
memory space, consider using BOOL8 format instead.

BOOL8 BOOL8 is used to store variables that hold bits (0 or 1) of
information. This data type uses less space than normal 32-bit values.
Any reps stored must be divisible by two, since an odd number of
bytes cannot be stored in a data table. When converting from a LONG
or a FLOAT to a BOOL8, only the least significant 8 bits are used.

NSEC 8 bytes divided up as 4 bytes of seconds since 1990 and 4 bytes of
nanoseconds into the second. Used when a LONG variable being
sampled is the result of the RealTime instruction or when the sampled
variable is a LONG storing time since 1990, such as when time of
maximum or time of minimum is asked for. Alternatively, if the
variable array (must be FLOAT or LONG) is dimensioned to 7, the
values stored will be year, month, day of year, hour, minutes,
seconds, and milliseconds. If the variable array (must be LONG) is
dimensioned to two, the instruction assumes that the first element
holds seconds since 1990 and the second element holds microseconds
into the second. If the variable array (must be LONG) is dimensioned
to 1, the instruction assumes that the variable holds seconds since
1990 and microseconds into the second is 0. In this instance, the
value stored is a standard datalogger timestamp rather than the
number of seconds since January 1990.

Read more! NSEC data type is discussed in depth, with examples, in
Section 18.12.

String ASCII String; size defined by the CR1000 CRBASIC program. The
minimum string datum size (regardless of word length), and the
default if size is not specified, is 16 bytes or characters. A string
conveniently handles alphanumeric variables associated with serial
sensors, dial strings, text messages, etc.

9.6.2 Constants
A constant can be declared at the beginning of a program to assign an
alphanumeric name to be used in place of a value so the program can refer to
the name rather than the value itself. Using a constant in place of a value can
make the program easier to read and modify, and more secure against
unintended changes. Constants can be changed while the program is running if
they are declared using the ConstTable/EndConstTable instruction.

Programming Tip: Using all uppercase for constant names may make
them easier to recognize.

Section 9. CR1000 Programming

9-11

EXAMPLE 9.6-3. CRBASIC Code: Using the Const Declaration.

Public PTempC, PTempF
Const CtoF_Mult = 1.8
Const CtoF_Offset = 32

BeginProg
 Scan (1,Sec,0,0)
 PanelTemp (PTempC,250)
 PTempF = PTempC * CtoF_Mult + CtoF_Offset
 NextScan
EndProg

9.6.3 Flags
Flags are a useful program control tool. While any variable of any data type
can be used as a flag, using Boolean variables, especially variables named
“Flag”, works best. EXAMPLE 9.6-4 shows an example using flags to change
the word in string variables.

EXAMPLE 9.6-4. CRBASIC Code: Flag Declaration and Use

Public Flag(2) As Boolean
Public FlagReport(2) As String

BeginProg
 Scan (1,Sec,0,0)
 If Flag(1) = True
 FlagReport(1) = "High"
 Else
 FlagReport(1) = "Low"
 EndIf
 If Flag(2) = True
 FlagReport(2) = "High"
 Else
 FlagReport(2) = "Low"
 EndIf
 NextScan
EndProg

9.7 Data Tables
Data are stored in tables as directed by the CR1000’s CRBASIC program. A
data table is created by a series of CRBASIC instructions which are entered
after variable declarations but before BeginProg instruction. These instructions
include:

DataTable() / EndTable
 Output Trigger Condition(s)
 Output Processing Instructions
EndTable instruction

Section 9. CR1000 Programming

9-12

A data table is essentially a file that resides in CR1000 memory. The file is
written to each time data are directed to that file. The trigger that initiates data
storage is tripped either by the CR1000’s clock, or by an event, such as a high
temperature. Up to 30 data tables can be created and written to by the
program. The program may store individual measurements, individual
calculated values, or summary data such as averages, maxima, or minima to
data tables.

Each data table is associated with overhead information that becomes part of
the ASCII file header when data are downloaded to a PC. Overhead
information includes:

• table format
• datalogger type and operating system version,
• name of the CRBASIC program running in the datalogger
• name of the data table (limited to 20 characters)
• alphanumeric field names to attach at the head of data columns

This information is referred to as “table definitions.”

TABLE 9.7-1. Typical Data Tableshows a data file as it appears after the
associated data table has been downloaded from a CR1000 programmed with
the code in EXAMPLE. “TIMESTAMP”, “RECORD”, “Batt_Volt_Avg”,
“PTemp_C_Avg”, and “TempC_Avg” are default fieldnames. Default
fieldnames are a combination of the variable names (or alias) from which data
are derived with a three letter suffix. The suffix is an abbreviation of the data
process that output the data to storage. For example, “Avg” is the abbreviation
for average. If the default fieldnames are not acceptable to the programmer,
FieldNames() instruction can be used to customized fieldnames.

The third row of the data table header lists units for the stored values. These
units are declared in the “Define Units” section of the program, as shown in
EXAMPLE 9.7-1. Units are strictly for documentation. The CR1000 makes
neither use of units nor checks on their accuracy.

TABLE 9.7-1. Typical Data Table

TOA5 CR1000 CR1000 1048 CR1000.Std.13.06 CPU:Data.CR1 35723 OneMin

TIMESTAMP RECORD Batt_Volt_Avg PTemp_C_Avg Temp_C_Avg(1) Temp_C_Avg(2)

TS RN Volts Deg C Deg C Deg C

 Avg Avg Avg Avg

7/11/2007 16:10 0 13.18 23.5 23.54 25.12

7/11/2007 16:20 1 13.18 23.5 23.54 25.51

7/11/2007 16:30 2 13.19 23.51 23.05 25.73

7/11/2007 16:40 3 13.19 23.54 23.61 25.95

7/11/2007 16:50 4 13.19 23.55 23.09 26.05

7/11/2007 17:00 5 13.19 23.55 23.05 26.05

7/11/2007 17:10 6 13.18 23.55 23.06 25.04

Section 9. CR1000 Programming

9-13

EXAMPLE 9.7-1. CRBASIC Code: Definition and Use of a Data Table

'CR1000

'Declare Variables
Public Batt_Volt
Public PTemp_C
Public Temp_C(2)

‘Define Units
Units Batt_Volt=Volts
Units PTemp_C=Deg C
Units Temp_C(2)=Deg C

'Define Data Tables
DataTable(OneMin,True,-1)
 DataInterval(0,1,Min,10)
 Average(1,Batt_Volt,FP2,False)
 Average(1,PTemp_C,FP2,False)
 Average(2,Temp_C(1),FP2,False)
EndTable

DataTable(Table1,True,-1)
 DataInterval(0,1440,Min,0)
 Minimum(1,Batt_Volt,FP2,False,False)
EndTable

'Main Program
BeginProg
 Scan(5,Sec,1,0)

 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)

 'Wiring Panel Temperature measurement PTemp_C:
 PanelTemp(PTemp_C,_60Hz)

 'Type T (copper-constantan) Thermocouple measurements Temp_C:
 TCDiff(Temp_C(),2,mV2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

 'Call Data Tables and Store Data
 CallTable(OneMin)
 CallTable(Table1)

 NextScan
EndProg

9.7.1 Data Tables
As shown in EXAMPLE 9.7-1, data table declaration begins with the
DataTable() instruction and ends with the EndTable() instruction. Between
DataTable() and EndTable() are instructions that define what data to store and
under what conditions data are stored. A data table must be called by the
CRBASIC program for data storage processing to occur. Typically, data tables
are called by the CallTable() instruction once each Scan.

Section 9. CR1000 Programming

9-14

9.7.1.1 DataTable() and EndTable()
The DataTable instruction has three parameters: a user-specified alphanumeric
name for the table (e.g., “OneMin”), a trigger condition (e.g., “True”), and the
size to make the table in RAM (e.g., auto allocated).

• Name -- The table name can be any combination of numbers and letters up
to 20 characters in length. The first character must be a letter.

• TrigVar -- The trigger condition may be a variable, expression, or
constant. The trigger is true if it is not equal to 0 or “false”. Data are
stored if the trigger is true and there are no other conditions to be met.

TrigVar is a powerful tool. Read Section 11.10 for more
information on using TrigVar in special applications.

• Size - Table size is the number of records to store in a table before new
data begins overwriting old data. If “-1” is entered, memory for the table
is determined (auto-allocated) by the CR1000.

EXAMPLE creates a data table named “OneMin”, stores data once a minute as
defined by DataInterval(), and retains the most recent records in RAM, up to an
automatically allocated memory limit (auto allocation code =
-1).

9.7.1.2 DataInterval()
Add something about open interval and closed interval. Historic note: CR10X
data being on an “open interval.”

DataInterval() sets the period at which data are stored. It as four parameters:

• time into interval
• interval on which data are stored
• units for time
• number of lapses or gaps in the interval to track

If a DataInterval() instruction is used in the data table declaration, a timestamp
will not be stored for each record. This feature reduces memory required for
the data table. When data are downloaded to a PC, timestamps are calculated
from the data storage interval set in DataInterval() and the time of the most
recent record. As each new record is stored, the current timestamp is compared
with the last known stored record. If, based on the interval and these
timestamps, the CR1000 determines a record has been skipped, a timestamp
will be stored with the data. This discontinuity in records is termed a “lapse.”
If the lapse parameter is set to zero, a timestamp will be stored with each
record.

NOTE

Section 9. CR1000 Programming

9-15

9.7.1.3 Output Processing Instructions
Data storage processing (“output processing”) instructions determine what
data are stored in the data table. When a data table is called in the CRBASIC
program, data storage processing instructions process variables holding current
inputs or calculations. If trigger conditions are true, e.g. the required interval
has expired, processed values are stored (“output”) in the data table. In
EXAMPLE, three averages are stored.

Consider the Average() instruction as an example of output processing
instructions. Average() stores the average of a variable over the data storage
output interval. Its parameters are:

• Reps -- number of elements in the variable array for which to calculate
averages. In EXAMPLE 9.7-1, reps is set to 1 to average PTemp, and set
to 2 to average 2 thermocouple temperatures, both of which reside in the
variable array “Temp_C”.

• Source -- variable array to average. In EXAMPLE 9.7-1, variable arrays
PTemp_C (an array of 1) and Temp_C() (an array of 2) are used.

• DataType -- Data type for the stored average.
• EXAMPLE 9.7-1 uses data type FP2, which is Campbell Scientific’s 2 -

byte floating point data type.

Read more! See Section 9.6.1.3 for more information on available data
types.

• DisableVar -- allows excluding readings from the average if conditions are
not met. A reading will not be included in the average if the disable
variable is not false or equal to zero; EXAMPLE 9.7-2, as is typical, has
false entered for the disable variable, so all readings are included in the
averages. In EXAMPLE 9.7-2, the average of variable “Oscillator” does
not include samples occurring when Flag 1 is high, producing an average
of 2, whereas, when Flag 1 is low (all samples used), an average of 1.5 is
calculated.

EXAMPLE 9.7-2. CRBASIC Code: Use of the Disable Variable.

'Declare Variables and Units
Public Oscillator As Long
Public Flag(1) As Boolean
Public DisableVar As Boolean

'Define Data Tables
DataTable(OscAvgData,True,-1)
 DataInterval (0,1,Min,10)
 Average(1,Oscillator,FP2,DisableVar)
EndTable

'Main Program
BeginProg
 Scan(1,Sec,1,0)

 'Reset and Increment Counter
 If Oscillator = 2 Then Oscillator = 0
 Oscillator = Oscillator + 1

Section 9. CR1000 Programming

9-16

 'Process and Control
 If Oscillator = 1
 If Flag(1) = True
 DisableVar = True
 End If
 Else
 DisableVar = False
 EndIf

 'Call Data Tables and Store Data
 CallTable(OscAvgData)

 NextScan
EndProg

Read more! For a complete list of output processing instructions, see
Section 10.2.3 Data Storage Output Processing.

9.8 Subroutines
Read more! See Section 11.4 Subroutines for more information on
programming with subroutines.

Subroutines allow a section of code to be called by multiple processes in the
main body of a program. Subroutines are defined before the main program
body (Section 11.4 Subroutines) of a program.

A particular subroutine can be called by multiple program
sequences simultaneously. To preserve measurement and
processing integrity, the CR1000 queues calls on the subroutine,
allowing only one call to be processed at a time in the order calls
are received. This may cause unexpected pauses in the
conflicting program sequences.

9.9 Program Timing: Main Scan
As shown in EXAMPLE 9.9-1, aside from declarations, the CRBASIC
program may be relatively short. Executable code begins with BeginProg and
ends with EndProg. Measurements, processing, and calls to data tables within
the Scan / NextScan loop determine the sequence and timing of program
functions.

EXAMPLE 9.9-1. CRBASIC Code: BeginProg / Scan / NextScan / EndProg Syntax

BeginProg
Scan(1,Sec,3,0)
 PanelTemp(RefTemp, 250)
 TCDiff(TC(),6,mV2_5C,1,TypeT,RefTemp,RevDiff,Del,Integ,Mult,Offset)
 CallTable Temp
NextScan
EndProg

NOTE

Section 9. CR1000 Programming

9-17

Scan determines how frequently instructions in the program are executed:

EXAMPLE 9.9-2. CRBASIC Code: Scan Syntax

'Scan(Interval, Units, BufferSize, Count)
Scan(1,Sec,3,0)
·
·
·
ExitScan

Scan has four parameters:

Interval is the interval between scans.

Units is the time unit for the interval. Interval is 10 ms < = Interval < = 1 day.

BufferSize is the size (number of scans) of a buffer in RAM that holds the raw
results of measurements. When running in Pipline mode, using a buffer allows
the processing in the scan to lag behind measurements at times without
affecting measurement timing.

Count is number of scans to make before proceeding to the instruction
following NextScan. A count of 0 means to continue looping forever (or until
ExitScan). In the example in EXAMPLE 9.9-2, the scan is 1 second, three
scans are buffered, and measurements and data storage continue indefinitely.

9.10 Program Timing: Slow Sequence Scans
Instructions in a slow sequence scan are executed whenever the main scan is
not active. When running in pipeline mode, slow sequence measurements will
be spliced in after measurements in the main program, as time allows. Because
of this splicing, the measurements in a slow sequence may actually span across
multiple main program scan intervals. When no measurements need to be
spliced, the scan will run independent of the fast scan, so slow sequences with
no measurements can run at intervals ≤ main scan interval (still in 100mS
increments) without skipping scans. When splicing, checking for skipped slow
scans is done after the first splice is complete rather than immediately after the
interval comes true.

In sequential mode, all instructions in the slow sequences are executed as they
occur in the program according to task priority.

Slow sequence scans are declared with the SlowSequence instruction and run
outside the main program scan. They typically run at a slower rate than the
main scan. Up to four slow sequences scans can be defined in a program.

Background calibration is an automatic slow sequence scan.

Read more! Section 06 Self-Calibration.

Section 9. CR1000 Programming

9-18

9.11 Program Execution and Task Priority
Execution of program instructions is prioritized among three tasks:
measurement / control, SDM, and processing. Processes of each task are listed
in TABLE 9.11-1.

The measurement / control task is a rigidly timed sequence that measures
sensors and outputs control signals for other devices.

The SDM task manages measurement and control of SDM devices (Campbell
Scientific’s Synchronous Devices for Measurement).

The processing task converts analog and digital measurements to numbers
represented by engineering units, performs calculations, stores data, makes
decisions to actuate controls, and performs serial I/O communication.

TABLE 9.11-1. Task Processes

 Measurement Task
• Analog Measurements
• Excitation
• Read Pulse Counters
• Read Control Ports

(GetPort)
• Set Control Ports

(SetPort
• VibratingWire
• PeriodAvg
• CS616
• Calibrate

SDM Task
• All SDM instructions,

except SMDSIO4 and
SDMIO16

Processing Task
• Processing
• Output
• Serial I/O
• SDMSIO4
• SDMIO16
• ReadIO
• WriteIO
• Expression evaluation

and variable setting in
measurement and SDM
instructions

The CR1000 executes these tasks in either pipeline or sequential mode. When
a program is compiled, the CR1000 evaluates the program and determines
which mode to use. Mode information is included in a message returned by the
datalogger, which is displayed by the support software. The CRBASIC Editor
precompiler returns a similar message.

A program can be forced to run in sequential or pipeline modes
by placing the SequentialMode or PipelineMode instruction in
the declarations section of the program.

Some tasks in a program may have higher priorities than other tasks.
Measurement tasks generally take precedence over all others. Priority of tasks
is different for pipeline mode and sequential mode.

9.11.1 Pipeline Mode
Pipeline Mode handles measurement, SDM, and processing tasks separately,
and possibly simultaneously. Measurements are scheduled to execute at exact
times and with the highest priority, resulting in more precise timing of
measurements, and usually more efficient processing and power consumption.

Pipeline scheduling requires that the program be written such that
measurements are executed every scan. Because multiple tasks are taking
place at the same time, the sequence in which the instructions are executed may
not be in the order in which they appear in the program. Therefore, conditional

NOTE

Section 9. CR1000 Programming

9-19

measurements are not allowed in pipeline mode. Because of the precise
execution of measurement instructions, processing in the current scan
(including update of public variables and data storage) is delayed until all
measurements are complete. Some processing, such as transferring variables to
control instructions, e.g. PortSet() and ExciteV(), may not be completed until
the next scan.

When a condition is true for a task to start, it is put in a queue. Because all
tasks are given the same priority, the task is put at the back of the queue.
Every 10 msec (or faster if a new task is triggered) the task currently running is
paused and put at the back of the queue, and the next task in the queue begins
running. In this way, all tasks are given equal processing time by the
datalogger.

All tasks are given the same general priority. However, when a conflict arises
between tasks, program execution adheres to the priority schedule in
TABLE 9.11-2.

TABLE 9.11-2. Pipeline Mode Task Priorities

1) Measurements in main program

2) Background calibration

3) Measurements in slow sequences

4) Processing tasks

9.11.2 Sequential Mode
Sequential mode executes instructions in the sequence in which they are
written in the program. Sequential mode may be slower than pipeline mode
since it executes only one line of code at a time. After a measurement is made,
the result is converted to a value determined by processing included in the
measurement instruction, and then execution proceeds to the next instruction.
This line-by-line execution allows writing conditional measurements into the
program.

The exact time at which measurements are made in sequential
mode may vary if other measurements or processing are made
conditionally, if there is heavy communications activity, or if
other interrupts such as inserting a CF card occur.

When running in sequential mode, the datalogger uses a queuing system for
processing tasks similar to the one used in pipeline mode. The main difference
when running a program in sequential mode is that there is no prescheduled
timing of measurements; instead, all instructions are executed in their
programmed order.

A priority scheme is used to avoid conflicting use of measurement hardware.
The main scan has the highest priority and prevents other sequences from using
measurement hardware until the main scan, including processing, is complete.
Other tasks, such as processing from other sequences and communications, can
occur while the main sequence is running. Once the main scan has finished,

NOTE

Section 9. CR1000 Programming

9-20

other sequences have access to measurement hardware with the order of
priority being the background calibration sequence followed by the slow
sequences in the order they are declared in the program.

Measurement tasks have priority over other tasks such as
processing and communication to allow accurate timing needed
within most measurement instructions.

9.12 Instructions
In addition to BASIC syntax, additional instructions are included in CRBASIC
to facilitate measurements and store data. Section 10 contains a comprehensive
list of these instructions.

9.12.1 Measurement and Data Storage Processing
CRBASIC instructions have been created for making measurements and
storing data. Measurement instructions set up CR1000 hardware to make
measurements and store results in variables. Data storage instructions process
measurements into averages, maxima, minima, standard deviation, FFT, etc.

Each instruction is a keyword followed by a series of informational parameters
needed to complete the procedure. For example, the instruction for measuring
CR1000 panel temperature is:

PanelTemp (Dest, Integ)

“PanelTemp” is the keyword. Two parameters follow: Dest, a destination
variable name in which the temperature value is stored; and Integ, a length of
time to integrate the measurement. To place the panel temperature
measurement in the variable RefTemp, using a 250 microsecond integration
time, the syntax is:

EXAMPLE 9.12-1. CRBASIC Code: Measurement Instruction Syntax

PanelTemp(RefTemp, 250)

9.12.2 Parameter Types
Many instructions have parameters that allow different types of inputs.
Common input type prompts are listed below. Allowed input types are
specifically identified in the description of each instruction in CRBASIC Editor
Help.

Constant, or Expression that evaluates as a constant
Variable
Variable or Array
Constant, Variable, or Expression
Constant, Variable, Array, or Expression
Name
Name or list of Names
Variable, or Expression
Variable, Array, or Expression

NOTE

Section 9. CR1000 Programming

9-21

9.12.3 Names in Parameters
TABLE 9.12-1 lists the maximum length and allowed characters for the names
for Variables, Arrays, Constants, etc. The CRBASIC Editor pre-compiler will
identify names that are too long or improperly formatted.

TABLE 9.12-1. Rules for Names

Name for

Maximum Length
(number of characters)

Allowed characters

Variable or Array 39 Letters A-Z, upper or lower.

Constant 38 case, underscore “_”, and

Alias 39 numbers 0-9. The name must

Data Table Name 20 start with a letter. CRBASIC is

Field name 39 not case sensitive

Field Name
Description

64

9.12.4 Expressions in Parameters
Read more! See Section 9.13 for more information on expressions.

Many parameters allow the entry of expressions. If an expression is a
comparison, it will return -1 if the comparison is true and 0 if it is false
(Section 9.13.4 Logical Expressions). EXAMPLE 9.12-2 shows an example of
the use of expressions in parameters in the DataTable instruction, where the
trigger condition is entered as an expression. Suppose the variable TC is a
thermocouple temperature:

EXAMPLE 9.12-2. CRBASIC Code: Use of Expressions in Parameters

‘DataTable(Name, TrigVar, Size)
DataTable(Temp, TC > 100, 5000)

Entering the trigger as the expression “TC > 100” will cause the trigger to be
true and data to be stored when the variable TC is greater than 100.

9.12.5 Arrays of Multipliers and Offsets
A single measurement instruction can measure a series of sensors and apply
individual calibration factors to each sensor as shown in EXAMPLE 9.12-3.
Storing calibration factors in variable arrays, and placing the array variables in
the multiplier and offset parameters of the measurement instruction, makes this
possible. The measurement instruction uses repetitions to implement this
feature by stepping through the multiplier and offset arrays as it steps through
the measurement input channels. If the multiplier and offset are not arrays, the
same multiplier and offset are used for each repetition.

Section 9. CR1000 Programming

9-22

EXAMPLE 9.12-3. CRBASIC Code: Use of Arrays as Multipliers and Offsets

Public Pressure(3), Mult(3), Offset(3)

DataTable (AvgPress,1,-1)
 DataInterval (0,60,Min,10)
 Average (3,Pressure(),IEEE4,0)
EndTable

BeginProg
 'Calibration Factors:
 Mult(1)=0.123 : Offset(1)=0.23
 Mult(2)=0.115 : Offset(2)=0.234
 Mult(3)=0.114 : Offset(3)=0.224

 Scan (1,Sec,10,0)
 'VoltSe instruction using array of multipliers and offsets:
 VoltSe (Pressure(),3,mV5000,1,True,0,_60Hz,Mult(),Offset())
 CallTable AvgPress
 NextScan
EndProg

Read more! More information is available in CRBASIC Editor Help topic
“Multipliers and Offsets with Repetitions”.

9.13 Expressions
An expression is a series of words, operators, or numbers that produce a value
or result. Two types of expressions, mathematical and programming, are used
in CRBASIC. A useful property of expressions in CRBASIC is that they are
equivalent to and often interchangeable with their results.

Consider the expressions:

x = z * 1.8 + 32 (a mathematical expression)
If x = 23 then y = 5 (programming expression)

The variable x can be omitted and the expressions combined and written as:

If z * 1.8 + 32 = 23 then y = 5

Replacing the result with the expression should be done judiciously and with
the realization that doing so may make program code more difficult to
decipher.

9.13.1 Floating Point Arithmetic
Variables and calculations are performed internally in single precision IEEE 4
byte floating point with some operations calculated in double precision.

Section 9. CR1000 Programming

9-23

Single precision float has 24 bits of mantissa. Double precision
has a 32-bit extension of the mantissa, resulting in 56 bits of
precision. Instructions that use double precision are AddPrecise,
Average, AvgRun, AvgSpa, CovSpa, MovePrecise, RMSSpa,
StdDev, StdDevSpa, and Totalize.

Floating point arithmetic is common in many electronic computational
systems, but it has pitfalls high-level programmers should be aware of. Several
sources discuss floating point arithmetic thoroughly. One readily available
source is the topic “Floating Point” at Wikipedia.org. In summary, CR1000
programmers should consider at least the following:

• Floating point numbers do not perfectly mimic real numbers.

• Floating point arithmetic does not perfectly mimic true arithmetic.

• Avoid use of equality in conditional statements. Use >= and <= instead.
For example, use “If X => Y, then do” rather than using, “If X = Y, then
do”.

• Avoid extended cyclical summation of non-integers. This applies to the
output processing instruction Totalize as well as user coded totalizing
routines. As the size of the sum increases, fractional addends will have
ever decreasing effect on the magnitude of the sum, because floating point
numbers are limited to about 7 digits of resolution.

9.13.2 Mathematical Operations
Mathematical operations are written out much as they are algebraically. For
example, to convert Celsius temperature to Fahrenheit, the syntax is:

TempF = TempC * 1.8 + 32

EXAMPLE 9.13-1 shows example code to convert twenty temperatures in a
variable array from C to F:

EXAMPLE 9.13-1. CRBASIC Code: Use of variable arrays to save code space.

For I = 1 to 20
 TCTemp(I) = TCTemp(I) * 1.8 + 32
Next I

9.13.3 Expressions with Numeric Data Types
FLOATs, LONGs and Booleans are cross-converted to other data types, such
as FP2, by using “=”

9.13.3.1 Boolean from FLOAT or LONG
When a FLOAT or LONG is converted to a Boolean as shown in EXAMPLE
9.13-2, zero becomes False (0) and non-zero becomes True (-1).

NOTE

Section 9. CR1000 Programming

9-24

EXAMPLE 9.13-2. CRBASIC Code: Conversion of FLOAT / LONG to Boolean

Public Fa AS FLOAT
Public Fb AS FLOAT
Public L AS LONG
Public Ba AS Boolean
Public Bb AS Boolean
Public Bc AS Boolean

BeginProg
 Fa = 0
 Fb = 0.125
 L = 126
 Ba = Fa ‘This will set Ba = False (0)
 Bb = Fb ‘This will Set Bb = True (-1)
 Bc = L ‘This will Set Bc = True (-1)
EndProg

9.13.3.2 FLOAT from LONG or Boolean
When a LONG or Boolean is converted to FLOAT, the integer value is loaded
into the FLOAT. Booleans will be converted to -1 or 0 depending on whether
the value is non-zero or zero. LONG integers greater than 24 bits (16,777,215;
the size of the mantissa for a FLOAT) will lose resolution when converted to
FLOAT.

9.13.3.3 LONG from FLOAT or Boolean
Booleans will be converted to -1 or 0. When a FLOAT is converted to a
LONG, it is truncated. This conversion is the same as the INT function
(Section 10.6.4 Arithmetic Functions). The conversion is to an integer equal to
or less than the value of the float (e.g., 4.6 becomes 4, -4.6 becomes -5).

If a FLOAT is greater than the largest allowable LONG (+2,147,483,647), the
integer is set to the maximum. If a FLOAT is less than the smallest allowable
LONG (-2,147,483,648), the integer is set to the minimum.

9.13.3.4 Integers in Expressions
LONGs are evaluated in expressions as integers when possible. EXAMPLE
9.13-3 illustrates evaluation of integers as LONGs and FLOATs.

EXAMPLE 9.13-3. CRBASIC Code: Evaluation of Integers

Public X, I AS Long
BeginProg
 I = 126
 X = (I+3) * 3.4
 ‘I+3 is evaluated as an integer,
 ‘then converted to FLOAT before
 ‘it is multiplied by 3.4
EndProg

Section 9. CR1000 Programming

9-25

9.13.3.5 Constants Conversion
If a constant (either entered as a number or declared with CONST) can be
expressed correctly as an integer, the compiler will use the type that is most
efficient in each expression. The integer version will be used if possible, i.e., if
the expression has not yet encountered a float. This is illustrated in
EXAMPLE 9.13-4.

EXAMPLE 9.13-4. CRBASIC Code: Constants to LONGs or FLOATs

Public I AS Long ‘I is an integer
Public F1, F2 ‘F1 and F2 are Floats
CONST ID = 10
BeginProg
 I = ID * 5 ‘ID (10) and 5 are loaded at
 ‘compile time as Floats
 F1 = F2 + ID ‘ID (10) is loaded at compile
 ‘time as a float to avoid a
 ‘run time conversion from an
 ‘integer before each addition
EndProg

9.13.4 Logical Expressions
Measurements made by the CR1000 can indicate the absence or presence of
certain conditions. For example, an RH measurement of 100% indicates a
condensation event such as fog, rain, or dew. CR1000’s can render events into
a binary form for further processing, i.e., events can either be TRUE1 (equal to
-1 in the CR1000)2, indicating the condition occurred or is occurring, or
FALSE (0), indicating the condition has not yet occurred or is over.

The CR1000 is able to translate the conditions listed in TABLE 9.13-1 to
binary form (-1 or 0), using the listed instructions and saving the binary form in
the memory location indicated.

1 Several words are commonly interchanged with True / False such as High /
Low, On / Off, Yes / No, Set / Reset, Trigger / Do Not Trigger. The CR1000
understands only True / False or -1 / 0, however. The CR1000 represents
“true” with “-1” because AND / OR operators are the same for logical
statements and binary bitwise comparisons.

2 In the binary number system internal to the CR1000, “-1” is expressed with
all bits equal to 1 (11111111). “0” has all bits equal to 0 (00000000). When -1
is ANDed with any other number, the result is the other number. This ensures
that if the other number is non-zero (true), the result will be non-zero.

Section 9. CR1000 Programming

9-26

TABLE 9.13-1. Binary Conditions of TRUE and FALSE

Condition
CRBASIC

Instruction(s) Used
Memory Location of

Binary Result

Time TimeIntoInterval() Variable, System
 IfTime() Variable, System

Control Port Trigger WaitDigTrig() System

Communications VoiceBeg() System
 ComPortIsActive() Variable
 PPPClose() Variable

Measurement Event DataEvent() System

Using TRUE or FALSE conditions with logic operators such as AND and OR,
logical expressions can be encoded into a CR1000 to perform three general
logic functions, facilitating conditional processing and control applications.

1. Evaluate an expression, take one path or action if the expression is true
(= -1), and / or another path or action if the expression is false (= 0).

2. Evaluate multiple expressions linked with AND or OR.

3. Evaluate multiple and / or links.

The following commands and logical operators are used to construct logical
expressions. EXAMPLE 9.13-5 a - f demonstrate some logical expressions.

IF
AND
OR
XOR
IMP
IIF

Section 9. CR1000 Programming

9-27

EXAMPLE 9.13-5. Logical Expression Examples

a. If X >= 5 then Y = 0

Sets the variable Y to 0 if the expression “X >= 5” is true, i.e. if X is
greater than or equal to 5. The CR1000 evaluates the expression (X >= 5)
and registers in system memory a -1 if the expression is true, or a 0 if the
expression is false.

b. If X >= 5 AND Z = 2 then Y = 0

Sets Y = 0 only if both X >= 5 and Z = 2 are true.

c. If X >= 5 OR Z = 2 then Y = 0

Sets Y = 0 if either X >= 5 or Z = 2 is true.

d. If 6 then Y = 0.

“If 6” is true since “6” (a non-zero number) is returned, so Y will be set to
0 every time the statement is executed. Likewise, consider the equally
impractical statement

e. If 0 then Y = 0.

“If 0” is false since “0” is returned, so Y will never be set to 0 by this
statement.

f. Z = (X > Y).

Z will equal -1 if X > Y, or Z will equal 0 if X <= Y.

9.13.5 String Expressions
CRBASIC allows the addition or concatenation of string variables to variables
of all types using & and + operators. To ensure consistent results, use “&”
when concatenating strings. Use “+” when concatenating strings to other
variable types. EXAMPLE 9.13-6 demonstrates CRBASIC code for
concatenating strings and integers.

EXAMPLE 9.13-6. CRBASIC Code: String and Variable Concatenation

'Declare Variables
Dim Wrd(8) As String * 10
Public Phrase(2) As String * 80
Public PhraseNum(2) As Long

'Declare Data Table
DataTable (Test,1,-1)
 DataInterval (0,15,Sec,10)

 'Write phrases to data table "Test"
 Sample (2,Phrase,String)

Section 9. CR1000 Programming

9-28

EndTable

'Program
BeginProg
 Scan (1,Sec,0,0)

 'Assign strings to String variables
 Wrd(1) = " ":Wrd(2) = "Good":Wrd(3) = "morning":Wrd(4) = "Don't"
 Wrd(5) = "do":Wrd(6) = "that":Wrd(7) = ",":Wrd(8) = "Dave"

 'Assign integers to Long variables
 PhraseNum(1) = 1:PhraseNum(2) = 2

 'Concatenate string "1 Good morning, Dave"
 Phrase(1) = PhraseNum(1)+Wrd(1)&Wrd(2)&Wrd(1)&Wrd(3)&Wrd(7)&Wrd(1)&Wrd(8)

 'Concatenate string "2 Don't do that, Dave"
 Phrase(2) = PhraseNum(2)+Wrd(1)&Wrd(4)&Wrd(1)&Wrd(5)&Wrd(1)&Wrd(6)&Wrd(7)&Wrd(1)&Wrd(8)

 CallTable Test

 NextScan
EndProg

9.14 Program Access to Data Tables
CRBASIC has syntax provisions facilitating access to data in tables or
information relating to a table. Except when using the GetRecord() instruction
(Section 10.15 Data Table Access and Management), the syntax is entered
directly into the CRBASIC program through a variable name. The general
form is:

“TableName.FieldName_Prc (Fieldname Index, Records Back)”.

Where:

TableName = name of the data table

FieldName = name of the variable from which the processed value is
derived

Prc = Abbreviation of the name of the data process used. See TABLE
9.14-1 for a complete list of these abbreviations – not needed for
values from Status or Public tables.

Fieldname Index = Array element number (optional)

Records Back = How far back into the table to go to get the value
(optional)

Section 9. CR1000 Programming

9-29

TABLE 9.14-1. Abbreviations of Names of Data Processes

Abbreviation Process Name
Tot Totalize
Avg Average
Max Maximum
Min Minimum
SMM Sample at Max or Min
Std Standard Deviation
MMT Moment
 Sample
Hst Histogram
H4D Histogram4D
FFT FFT
Cov Covariance
RFH RainFlow Histogram
LCr Level Crossing
WVc WindVector
Med Median
ETsz ET
RSo Solar Radiation (from ET)
TMx Time of Max
TMn Time of Min

For instance, to access the number of watchdog errors, use the
“status.watchdogerrors,” where “status” is the table name, and
“watchdogerrors” is the field name.

Seven special variable names are used to access information about a table:

EventCount
EventEnd
Output
Record
TableFull
TableSize
TimeStamp

Consult CRBASIC Editor Help Index topic “DataTable access” for complete
information.

Section 9. CR1000 Programming

9-30

10-1

Section 10. CRBASIC Programming
Instructions

Read more! Parameter listings, application information, and code
examples are available in CRBASIC Editor Help. CRBASIC Editor is
part of PC400, LoggerNet, and RTDAQ.

Select instructions are explained more fully, some with example code, in
Section 11 Programming Resource Library. Example code is throughout
the CR1000 manual. Refer to the table of contents Example index.

10.1 Program Declarations
Alias
Assigns a second name to a variable.

Syntax
Alias [variable] = [alias name]

AngleDegrees
Sets math functions to use degrees instead of radians.

Syntax
AngleDegrees

AS
Sets data type for DIM or PUBLIC variables.

Syntax
Dim [variable] AS [data type]

Const
Declares symbolic constants for use in place of numeric entries.

Syntax
Const [constant name] = [value or expression]

ConstTable … EndConstTable
Declares constants that can be changed using the datalogger keyboard or
terminal ‘C’ option. The program is recompiled with the new values when
values change.

Syntax
ConstTable
 [constant a] = [value]
 [constant b] = [value]
 [constant c] = [value]
EndConstTable

Dim
Declares and dimensions private variables. Dimensions are optional.

Syntax
Dim [variable name (x,y,z)]

Section 10. CRBASIC Programming Instructions

10-2

ESSVariables
Automatically declares all the variables required for the datalogger when used
in an Environmental Sensor Station application. Used in conjunction with
ESSInitialize.

Syntax
ESSVariables

PipelineMode
Configures datalogger to perform measurement tasks separate from, but
concurrent with, processing tasks.

Syntax
PipelineMode

PreserveVariables
Retains in memory the values for variables declared by the Dim or Public
statements.

Syntax
PreserveVariables

Public
Declares and dimensions public variables. Dimensions are optional.

Syntax
Public [variable name (x,y,z)]

SetSecurity
Sets numeric password for datalogger security levels 1, 2, and 3. Security[I]
are constants. Executes at compile time.

Syntax
SetSecurity (security[1], security[2], security[3])

SequentialMode
Configures datalogger to perform tasks sequentially.

Syntax
SequentialMode

Station Name
Sets the station name internal to the CR1000. Does not affect data files
produced by support software.

Syntax
StationName [name of station]

Sub, Exit Sub, End Sub
Declares the name, variables, and code that form a Subroutine. Argument list
is optional. Exit Sub is optional.

Syntax
Sub [subroutine name] [(argument list)]
 [statement block]
 Exit Sub
 [statement block]
End Sub

Units
Assigns a unit name to a field associated with a variable.

Syntax
Units [variable] = [unit name]

Section 10. CRBASIC Programming Instructions

10-3

WebPageBegin / WebPageEnd
See Section 11.2 Information Services.

10.2 Data Table Declarations
DataTable … EndTable
Mark the beginning and end of a data table.

Syntax
DataTable(Name, TrigVar, Size)
 [data table modifiers]
 [on-line storage destinations]
 [output processing instructions]
EndTable

10.2.1 Data Table Modifiers
DataEvent
Sets triggers to start and stop storing records within a table. One application is
with WorstCase.

Syntax
DataEvent (RecsBefore, StartTrig, StopTrig, RecsAfter)

DataInterval
Sets the time interval for an output table.

Syntax
DataInterval (TintoInt, Interval, Units, Lapses)

FillStop
Sets a data table to fill and stop.

Syntax
FillStop

To reset a table after it fills and stops, use ResetTable()
instruction or LoggerNet | Connect | Datalogger | View Station
Status | Table Fill Times | Reset Tables.

OpenInterval
Sets time series processing to include all measurements since the last time data
storage occurred.

Syntax
OpenInterval

10.2.2 On-Line Data Destinations
CardOut
Send output data to a CF card module.

Syntax
CardOut (StopRing, Size)

DSP4
Send data to the DSP4 display

Syntax
DSP4 (FlagVar, Rate)

NOTE

Section 10. CRBASIC Programming Instructions

10-4

TableFile
Writes a file from a data table to the datalogger CPU, user drive, or a compact
flash card.

Syntax
TableFile ("FileName", Options, MaxFiles, NumRecs /
TimeIntoInterval, Interval, Units, OutStat, LastFileName)

10.2.3 Data Storage Output Processing
FieldNames
Immediately follows an output processing instruction to change default field
names.

Syntax
FieldNames ("Fieldname1 : Description1, Fieldname2 :
Description2…")

10.2.3.1 Single-Source
Average
Stores the average value over the output interval for the source variable or each
element of the array specified.

Syntax
Average (Reps, Source, DataType, DisableVar)

Covariance
Calculates the covariance of values in an array over time.

Syntax
Covariance (NumVals, Source, DataType, DisableVar, NumCov)

FFT
Performs a Fast Fourier Transform on a time series of measurements stored in
an array.

Syntax
FFT (Source, DataType, N, Tau, Units, Option)

Maximum
Stores the maximum value over the output interval.

Syntax
Maximum (Reps, Source, DataType, DisableVar, Time)

Median
Stores the median of a dependant variable over the output interval

Syntax
Median (Reps, Source, MaxN, DataType, DisableVar)

Minimum
Stores the minimum value over the output interval.

Syntax
Minimum (Reps, Source, DataType, DisableVar, Time)

Moment
Stores the mathematical moment of a value over the output interval.

Sytnax
Moment (Reps, Source, Order, DataType, DisableVar)

Section 10. CRBASIC Programming Instructions

10-5

PeakValley
Detects maxima and minima in a signal.

Syntax
PeakValley (DestPV, DestChange, Reps, Source, Hysteresis)

Sample
Stores the current value at the time of output.

Syntax
Sample (Reps, Source, DataType)

SampleFieldCal
Writes field calibration data to a table.
See Section 6.19 Calibration Functions.

SampleMaxMin
Samples a variable when another variable reaches its maximum or minimum
for the defined output period.

Syntax
SampleMaxMin (Reps, Source, DataType, DisableVar)

StdDev
Calculates the standard deviation over the output interval.

Syntax
StdDev (Reps, Source, DataType, DisableVar)

Totalize
Sums the total over the output interval.

Syntax
Totalize (Reps, Source, DataType, DisableVar)

10.2.3.2 Multiple-Source
ETsz
Stores evapotranspiration (ETsz) and solar radiation (RSo).

Syntax
ETsz (Temp, RH, uZ, Rs, Longitude, Latitude, Altitude, Zw, Sz,
DataType, DisableVar)

WindVector

Read more! See Section 11.5 Wind Vector.

Processes wind speed and direction from either polar or orthogonal sensors.
To save processing time, only calculations resulting in the requested data are
performed.

Syntax
WindVector (Repetitions, Speed/East, Direction/North, DataType,
DisableVar, Subinterval, SensorType, OutputOpt)

Section 10. CRBASIC Programming Instructions

10-6

10.2.4 Histograms
Histogram
Processes input data as either a standard histogram (frequency distribution) or a
weighted value histogram.

Syntax
Histogram (BinSelect, DataType, DisableVar, Bins, Form, WtVal,
LoLim, UpLim)

Histogram4D
Processes input data as either a standard histogram (frequency distribution) or a
weighted value histogram of up to 4 dimensions.

Syntax
Histogram4D (BinSelect, Source, DataType, DisableVar, Bins1,
Bins2, Bins3, Bins4, Form, WtVal, LoLim1, UpLim1, LoLim2,
UpLim2, LoLim3, UpLim3, LoLim4, UpLim4)

LevelCrossing
Processes data into a one or two dimensional histogram using a level crossing
counting algorithm.

Syntax
LevelCrossing (Source, DataType, DisableVar, NumLevels, 2ndDim,
CrossingArray, 2ndArray, Hysteresis, Option)

RainFlow
Creates a rainflow histogram.

Syntax
RainFlow(Source, DataType, DisableVar, MeanBins, AmpBins,
Lowlimit, Highlimit, MinAmp, Form)

10.3 Single Execution at Compile
Reside between BeginProg and Scan Instructions.

ESSInitialize
Placed after the BeginProg instruction but prior to the Scan instruction to
initialize ESS variables at compile time.

Syntax
ESSInitialize

MovePrecise
Used in conjunction with AddPrecise, moves a high precision variable into
another input location.

Syntax
MovePrecise (PrecisionVariable, X)

PulseCountReset
Resets the pulse counters and the running averages used in the pulse count
instruction.

Syntax
PulseCountReset

Section 10. CRBASIC Programming Instructions

10-7

10.4 Program Control Instructions
10.4.1 Common Controls

BeginProg … EndProg
Mark the beginning and end of a program.

Syntax
BeginProg
Program Code
EndProg

Call
Transfers program control from the main program to a subroutine.

Syntax
Call [subroutine name] (list of variables)

CallTable
Calls a data table, typically for output processing.

Syntax
CallTable [TableName]

Delay
Delays the program.

Syntax
Delay (Option, Delay, Units)

Do … Loop
Repeats a block of statements while a condition is true or until a condition
becomes true.

Syntax
Do [{While | Until} condition]
 [statementblock]
 [ExitDo]
 [statementblock]
Loop

-or-

Do
 [statementblock]
 [ExitDo]
 [statementblock]
Loop [{While | Until} condition]

Exit
Exit program.

Syntax
Exit

Section 10. CRBASIC Programming Instructions

10-8

For ... Next
Repeats a group of instructions a specified number of times.

Syntax
For counter = start To end [Step increment]
 [statementblock]
 [ExitFor]
 [statementblock]
Next [counter [, counter][, ...]]

If ... Then ... Else … ElseIf ... EndIf

EndSelect and EndIf call the same CR1000 function

Allows conditional execution, based on the evaluation of an expression. Else is
optional. ElseIf is optional.

Syntax
If [condition] Then [thenstatements] Else [elsestatements]

-or-

If [condition 1] Then
 [then statements]
ElseIf [condition 2] Then
 [elseif then statements]
Else
 [else statements]
EndIf

Scan … ExitScan … NextScan
Establishes the program scan rate. ExitScan is optional.

Syntax
Scan(Interval, Units, Option, Count)
 ...
Exit Scan
 ...
Next Scan

Select Case … Case … Case Is … Case Else … EndSelect

EndSelect and EndIf call the same CR1000 function

Executes one of several statement blocks depending on the value of an
expression. CaseElse is optional

Syntax
Select Case testexpression
Case [expression 1]
 [statement block 1]
Case [expression 2]
 [statement block 2]
Case Is [expression fragment]
Case Else
 [statement block 3]
EndSelect

NOTE

NOTE

Section 10. CRBASIC Programming Instructions

10-9

Slow Sequence
Marks the beginning of a section of code that will run concurrently with the
main program.

Syntax
SlowSequence

SubScan … NextSubScan
Controls a multiplexer or measures some analog inputs at a faster rate than the
program scan.

Syntax
SubScan (SubInterval, Units, Count)
 Measurements and processing
NextSubScan

WaitDigTrig
Triggers a measurement scan from an external digital trigger.

Syntax
WaitDigTrig (ControlPort, Option)

While…Wend
Execute a series of statements in a loop as long as a given condition is true.

Syntax
While Condition
 [StatementBlock]
Wend

10.4.2 Advanced Controls
Data … Read … Restore
Defines a list of Float constants to be read (using Read) into a variable array
later in the program.

Syntax
Data [list of constants]

Read [VarExpr]

Restore

DataLong … Read … Restore
Defines a list of Long constants to be read (using Read) into a variable array
later in the program.

Syntax
DataLong [list of constants]

Read [VarExpr]

Restore

Read
Reads constants from the list defined by Data or DataLong into a variable
array.

Syntax
Read [VarExpr]

Section 10. CRBASIC Programming Instructions

10-10

Restore
Resets the location of the Read pointer back to the first value in the list defined
by Data or DataLong.

10.5 Measurement Instructions
10.5.1 Diagnostics

Battery
Measures input voltage.

Syntax
Battery (Dest)

ComPortIsActive
Returns a Boolean value, based on whether or not activity is detected on the
specified COM port.

Syntax
variable = ComPortIsActive (ComPort)

InstructionTimes
Returns the execution time of each instruction in the program.

Syntax
InstructionTimes (Dest)

MemoryTest
Performs a test on the datalogger's CPU and Task memory and store the results
in a variable.

Syntax
MemoryTest (Dest)

PanelTemp
This instruction measures the panel temperature in °C.

Syntax
PanelTemp (Dest, Integ)

RealTime
Derives the year, month, day, hour, minute, second, microsecond, day of week,
and day of year from the datalogger clock and stores the results in an array.

Syntax
RealTime (Dest)

Signature
Returns the signature for program code in a datalogger program.

Syntax
variable = Signature

10.5.2 Voltage
VoltDiff
Measures the voltage difference between H and L inputs of a differential
channel

Syntax
VoltDiff (Dest, Reps, Range, DiffChan, RevDiff, SettlingTime, Integ,
Mult, Offset)

Section 10. CRBASIC Programming Instructions

10-11

VoltSe
Measures the voltage at a single-ended input with respect to ground.

Syntax
VoltSe (Dest, Reps, Range, SEChan, MeasOfs, SettlingTime, Integ,
Mult, Offset)

10.5.3 Thermocouples
Read more! See Section 4.34 Thermocouple Measurements.

TCDiff
Measures a differential thermocouple.

Syntax
TCDiff (Dest, Reps, Range, DiffChan, TCType, TRef, RevDiff,
SettlingTime, Integ, Mult, Offset)

TCSe
Measures a single-ended thermocouple.

Syntax
TCSe (Dest, Reps, Range, SEChan, TCType, TRef, MeasOfs,
SettlingTime, Integ, Mult, Offset)

10.5.4 Bridge Measurements
Read more! See Section 4.3 Bridge Resistance Measurements.

BrHalf
Measures single-ended voltage of a 3 wire half bridge. Delay is optional.

Syntax
BrHalf (Dest, Reps, Range, SEChan, Vx/ExChan, MeasPEx, ExmV,
RevEx, SettlingTime, Integ, Mult, Offset)

BrHalf3W
Measures ratio of Rs / Rf of a 3 wire half bridge.

Syntax
BrHalf3W (Dest, Reps, Range, SEChan, Vx/ExChan, MeasPEx,
ExmV, RevEx, SettlingTime, Integ, Mult, Offset)

BrHalf4W
Measures ratio of Rs / Rf of a 4 wire half bridge.

Syntax
BrHalf4W (Dest, Reps, Range1, Range2, DiffChan, Vx/ExChan,
MeasPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

BrFull
Measures ratio of Vdiff / Vx of a 4 wire full bridge. Reports 1000 * (Vdiff /
Vx).

Syntax
BrFull (Dest, Reps, Range, DiffChan, Vx/ExChan, MeasPEx, ExmV,
RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

Section 10. CRBASIC Programming Instructions

10-12

BrFull6W
Measures ratio of Vdiff2 / Vdiff1 of a 6 wire full bridge. Reports 1000 * (Vdiff2 /
Vdiff1).

Syntax
BrFull6W (Dest, Reps, Range1, Range2, DiffChan, Vx/ExChan,
MeasPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

10.5.5 Excitation
ExciteV
This instruction sets the specified switched voltage excitation channel to the
voltage specified.

Syntax
ExciteV (Vx/ExChan, ExmV, XDelay)

SW12
Sets a switched 12-volt supply high or low.

Syntax
SW12 (State)

10.5.6 Pulse
Read more! See Section 4.5 Pulse Count Measurement.

PulseCount
Measures number or frequency of voltages pulses on a pulse channel.

Syntax
PulseCount (Dest, Reps, PChan, PConfig, POption, Mult, Offset)

10.5.7 Digital I/O
CheckPort
Returns the status of a control port.

Syntax
CheckPort (Port)

PeriodAvg
Measures the period of a signal on any single-ended voltage input channel.

Syntax
PeriodAvg (Dest, Reps, Range, SEChan, Threshold, PAOption,
Cycles, Timeout, Mult, Offset)

PortsConfig
Configure control ports as input or output.

Syntax
PortsConfig (Mask, Function)

PortGet
Reads the status of a control port.

Syntax
PortGet (Dest, Port)

PortSet
Sets the specified port high or low.

Syntax
PortSet (Port, State)

Section 10. CRBASIC Programming Instructions

10-13

PulsePort
Toggles the state of a control port, delays the specified amount of time, toggles
the port, and delays a second time.

Syntax
PulsePort (Port, Delay)

ReadIO
Reads the status of selected control I/O ports.

Syntax
ReadIO (Dest, Mask)

TimerIO
Measures interval or frequency on a digital I/O port.

Syntax
TimerIO (Dest, Edges, Function, Timeout, Units)

VibratingWire
The VibratingWire instruction is used to measure a vibrating wire sensor with a
swept frequency (from low to high).

Syntax
VibratingWire (Dest, Reps, Range, SEChan, Vx/ExChan, StartFreq,
EndFreq, TSweep, Steps, DelMeas, NumCycles, DelReps, Multiplier,
Offset)

WriteIO
WriteIO is used to set the status of selected control I/O channels (ports) on the
CR1000.

Syntax
WriteIO (Mask, Source)

10.5.8 SDI-12
Read more! See Section 11.3 SDI-12 Support.

SDI12Recorder
The SDI12Recorder instruction is used to retrieve the results from an SDI-12
sensor.

Syntax
SDI12Recorder (Dest, SDIPort, SDIAddress, SDICommand,
Multiplier, Offset)

SDI12SensorSetup
Sets up the datalogger to act as an SDI12 sensor

SDI12SensorResponse
Holds the source of the data to send to the SDI12 recorder.

Syntax
SDI12SensorSetup (Repetitions, SDIPort, SDIAddress,
ResponseTime)

SDI12SensorResponse (SDI12Source)

Section 10. CRBASIC Programming Instructions

10-14

10.5.9 Specific Sensors
CS110
Measures electric field by means of a CS110 electric field meter.

Syntax
CS110 (Dest, Leakage, Status, Integ, Mult, Offset)

CS110Shutter
Controls the shutter of a CS110 electric field meter.

Syntax
CS110Shutter (Status, Move)

CS616
Enables and measures a CS616 water content reflectometer.

Syntax
CS616 (Dest, Reps, SEChan, Port, MeasPerPort, Mult, Offset)

TGA
Measures a TGA100A trace gas analyzer system.

Syntax
TGA (Dest, SDMAddress, DataList, ScanMode)

HydraProbe
Reads the Stevens Vitel SDI-12 Hydra Probe sensor.

Syntax
HydraProbe (Dest, SourceVolts, ProbeType, SoilType)

Therm107
Measures a Campbell Scientific 107 thermistor.

Syntax
Therm107 (Dest, Reps, SEChan, Vx/ExChan, SettlingTime, Integ,
Mult, Offset)

Therm108
Measures a Campbell Scientific 108 thermistor.

Syntax
Therm108 (Dest, Reps, SEChan, Vx/ExChan, SettlingTime, Integ,
Mult, Offset)

Therm109
Measures a Campbell Scientific 109 thermistor.

Syntax
Therm109 (Dest, Reps, SEChan, Vx/ExChan, SettlingTime, Integ,
Mult, Offset)

CS7500
Communicates with the CS7500 open path CO2 and H2O sensor.

Syntax
CS7500 (Dest, Reps, SDMAddress, CS7500Cmd)

CSAT3
Communicates with the CSAT3 three-dimensional sonic anemometer.

Syntax
CSAT3 (Dest, Reps, SDMAddress, CSAT3Cmd, CSAT3Opt)

Section 10. CRBASIC Programming Instructions

10-15

10.5.10 Peripheral Device Support
Multiple SDM instructions can be used within a program.

AM25T
Controls the AM25T Multiplexer.

Syntax
AM25T (Dest, Reps, Range, AM25TChan, DiffChan, TCType, Tref,
ClkPort, ResPort, VxChan, RevDiff, SettlingTime, Integ, Mult,
Offset)

SDMAO4
Sets output voltage levels in an SDM-AO4 analog output device.

Syntax
SDMAO4 (Source, Reps, SDMAdress)

SDMCAN
Reads and controls an SDM-CAN interface.

Syntax
SDMCAN (Dest, SDMAddress, TimeQuanta, TSEG1, TSEG2, ID,
DataType,

SDMCD16AC
Controls an SDM-CD16AC, SDM-CD16, or SDM-CD16D control device.

Syntax
SDMCD16AC (Source, Reps, SDMAddress)

SDMCVO4
Control the SDM-CVO4 four channel current/voltage output device.

Syntax
SDMCVO4 (CVO4Source, CVO4Reps, SDMAddress, CVO4Mode)

SDMINT8
Controls and reads an SDM-INT8.

Syntax
SDMINT8 (Dest, Address, Config8_5, Config4_1, Funct8_5,
Funct4_1, OutputOpt, CaptureTrig, Mult, Offset)

SDMIO16
Sets up and measures an SDM-IO16 control port expansion device.

Syntax
SDMIO16 (Dest, Status, Address, Command, Mode Ports 16-13,
Mode Ports 12-9, Mode Ports 8-5, Mode Ports 4-1, Mult, Offset)

SDMSIO4
Controls and transmits / receives data from an SDM-SIO4 Interface.

Syntax
SDMSIO4 (Dest, Reps, SDMAddress, Mode, Command, Param1,
Param2, ValuesPerRep, Multiplier, Offset)

SDMSpeed
Changes the rate the CR1000 uses to clock SDM data.

Syntax
SDMSpeed (BitPeriod)

Section 10. CRBASIC Programming Instructions

10-16

SDMSW8A
Controls and reads an SDM-SW8A.

Syntax
SDMSW8A (Dest, Reps, SDMAddress, FunctOp, SW8AStartChan,
Mult, Offset)

SDMTrigger
Synchronize when SDM measurements on all SDM devices are made.

Syntax

SDMX50
Allows individual multiplexer switches to be activated independently of the
TDR100 instruction.

Syntax
SDMX50 (SDMAddress, Channel)

TDR100
Directly measures TDR probes connected to the TDR100 or via an SDMX50.

Syntax
TDR100 (Dest, SDMAddress, Option, Mux/ProbeSelect, WaveAvg,
Vp, Points, CableLength, WindowLength, ProbeLength, ProbeOffset,
Mult, Offset)

10.6 Processing and Math Instructions
10.6.1 Mathematical Operators

Program declaration AngleDegrees (Sec 12.1) sets math
functions to use degrees instead of radians.

^ Raise to PowerResult is always promoted to a float to avoid problems that
may occur when raising an integer to a negative power. However, loss of
precision occurs if result is > 24 bits.

For example:

(46340 ^ 2) will yield 2,147,395,584 (not precisely correct)

whereas

(46340 * 46340) will yield 2,147,395,600 (precisely correct)

Simply use repeated multiplications instead of ^ operators when full 32-bit
precision is required.

Same functionality as PWR instruction (12.6.4).

* Multiply
/ Divide

Use INTDV to retain 32-bit precision
+ Add
- Subtract
= Equals
<> Not Equal

NOTE

Section 10. CRBASIC Programming Instructions

10-17

> Greater Than
< Less Than
>= Greater Than or Equal
<= Less Than or Equal

Bit Shift Operators

Bit shift operators (<< and >>) allow the program to manipulate the positions
of patterns of bits within an integer (CRBASIC Long type). Here are some
example expressions and the expected results:

&B00000001 << 1 produces &B00000010 (decimal 2)
&B00000010 << 1 produces &B00000100 (decimal 4)
&B11000011 << 1 produces &B10000110 (decimal 134)
&B00000011 << 2 produces &B00001100 (decimal 12)
&B00001100 >> 2 produces &B00000011 (decimal 3)

The result of these operators is the value of the left hand operand with all of its
bits moved by the specified number of positions. The resulting "holes" are
filled with zeroes.

Consider a sensor or protocol that produces an integer value that is a composite
of various "packed" fields. This approach is quite common in order to
conserve bandwidth and/or storage space. Consider the following example of
an eight byte value:

bits 7-6: value_1
bits 5-4: value_2
bits 3-0: value_3

Code to extract these values is shown in EXAMPLE 10.6-1.

EXAMPLE 10.6-1. CRBASIC Code: Using bit shift operators.

Dim input_val as LONG
Dim value_1 as LONG
Dim value_2 as LONG
Dim value_3 as LONG

'read input_val somehow
value_1 = (input_val AND &B11000000) >> 6
value_2 = (input_val AND &B00110000) >> 4

'note that value_3 does not need to be shifted
value_3 = (input_val AND &B00001111)

With unsigned integers, shifting left is the equivalent of multiplying by two
and shifting right is the equivalent of dividing by two.

Section 10. CRBASIC Programming Instructions

10-18

<<
Bit shift left
 Syntax
 Variable = Numeric Expression >> Amount

>>
Bit shift right
 Syntax
 Variable = Numeric Expression >> Amount

10.6.2 Logical Operators
AND
Used to perform a logical conjunction on two expressions.

Syntax
result = expr1 And expr2

NOT
Performs a logical negation on an expression.

Syntax
result = NOT expression

OR
Used to perform a logical disjunction on two expressions.

Syntax
result = expr1 Or expr2

XOR
Performs a logical exclusion on two expressions.

Syntax
result = expr1 XOR expr2

IIF
Evaluates a variable or expression and returns one of two results based on the
outcome of that evaluation.

Syntax
Result = IIF(Expression, TrueValue, FalseValue)

IMP
Performs a logical implication on two expressions.

Syntax
result = expression1 IMP expression2

10.6.3 Trigonometric Functions
10.6.3.1 Derived Functions

TABLE 10.6-1 is a list of trigonometric functions that can be derived from
functions intrinsic to CRBASIC.

Section 10. CRBASIC Programming Instructions

10-19

TABLE 10.6-1. Derived Trigonometric Functions

Function CRBASIC Equivalent
Secant Sec = 1 / Cos(X)
Cosecant Cosec = 1 / Sin(X)
Cotangent Cotan = 1 / Tan(X)
Inverse Secant Arcsec = Atn(X/Sqr(X*X-1))+Sgn(Sgn(X)-

1)*1.5708
Inverse Cosecant Arccosec = Atn(X/Sqr(X*X-1))+(Sgn(X)-

1)*1.5708
Inverse Cotangent Arccotan = Atn(X) + 1.5708
Hyperbolic Secant HSec = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan = (Exp(X)+Exp(-X))/(Exp(X)-Exp(-X))
Inverse Hyperbolic Sine HArcsin = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic
Cosine

HArccos = Log(X + Sqr(X * X - 1))

Inverse Hyperbolic
Tangent

HArctan = Log((1 + X) / (1 - X)) / 2

Inverse Hyperbolic Secant HArcsec = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic
Cosecant

HArccosec = Log((Sgn(X)*Sqr(X*X+1)+1)/X)

Inverse Hyperbolic
Cotangent

HArccotan = Log((X + 1) / (X - 1)) / 2

10.6.3.2 Intrinsic Functions
ACOS
Returns the arc cosine of a number.

Syntax
x = ACOS (source)

ASIN
The ASIN function returns the arc sin of a number.

Syntax
x = ASIN (source)

ATN
Returns the arctangent of a number.

Syntax
x = ATN (source)

COS
Returns the cosine of an angle specified in radians.

Syntax
x = COS (source)

Section 10. CRBASIC Programming Instructions

10-20

COSH
Returns the hyperbolic cosine of an expression or value.

Syntax
x = COSH (source)

SIN
Returns the sine of an angle.

Syntax
x = SIN (source)

SINH
Returns the hyperbolic sine of an expression or value.

Syntax
x = SINH(Expr)

TAN
Returns the tangent of an angle.

Syntax
x = TAN (source)

TANH
Returns the hyperbolic tangent of an expression or value.

Syntax
x = TANH (Source)

10.6.4 Arithmetic Functions
ABS
Returns the absolute value of a number.

Syntax
x = ABS (source)

FRAC
Returns the fractional part of a number.

Syntax
x = FRAC (source)

EXP
Returns e (the base of natural logarithms) raised to a power

Syntax
x = EXP (source)

Floor
Rounds a value to a lower integer.

Syntax
variable = Floor (Number)

Ceiling
Rounds a value to a higher integer.

Syntax
variable = Ceiling (Number)

Section 10. CRBASIC Programming Instructions

10-21

INT or FIX
Return the integer portion of a number.

Syntax
x = INT (source)
x = Fix (source)

INTDV
Performs an integer division of two numbers.

Syntax
X INTDV Y

LN or LOG
Returns the natural logarithm of a number. Ln and Log perform the same
function.

Syntax
x = LOG (source)
x = LN (source)

LOGN = LOG(X) / LOG(N)

LOG10
The LOG10 function returns the base 10 logarithm of a number.

Syntax
x = LOG10 (number)

MOD
Divides two numbers and returns only the remainder.

Syntax
result = operand1 MOD operand2

PWR
Performs an exponentiation on a variable. Same functionality as ^ operator
(6.6.1).

Syntax
PWR (X, Y)

Round
Rounds a value to a higher or lower number.

Syntax
variable = Round (Number, Decimal)

SGN
Finds the sign value of a number.

Syntax
x = SGN (source)

Sqr
Returns the square root of a number.

Syntax
x = SQR (number)

NOTE

Section 10. CRBASIC Programming Instructions

10-22

RectPolar
Converts from rectangular to polar coordinates.

Syntax
RectPolar (Dest, Source)

10.6.5 Integrated Processing
PRT
Calculates temperature from the resistance of an RTD.

Syntax
PRT (Dest, Reps, Source, Mult, Offset)

DewPoint
Calculates dew point temperature from dry bulb and relative humidity.

Syntax
DewPoint (Dest, Temp, RH)

VaporPressure
Calculates vapor pressure from temperature and relative.

Syntax
VaporPressure (Dest, Temp, RH)

SatVP
Calculates saturation vapor pressure (kPa) from temperature.

Syntax
SatVP (Dest, Temp)

WetDryBulb
Calculates vapor pressure (kPa) from wet and dry bulb temperatures and
barometric pressure.

Syntax
WetDryBulb (Dest, DryTemp, WetTemp, Pressure)

StrainCalc
Converts the output of a bridge measurement instruction to microstrain.

Syntax
StrainCalc (Dest, Reps, Source, BrZero, BrConfig, GF, v)

10.6.6 Spatial Processing
CovSpa
Computes the spatial covariance of sets of data.

Syntax
CovSpa(Dest, NumOfCov, SizeOfSets, CoreArray, DatArray)

FFTSpa
Performs a Fast Fourier Transform on a time series of measurements.

Syntax
FFTSpa (Dest, N, Source, Tau, Units, Option)

AvgSpa
Computes the spatial average of the values in the source array.

Syntax
AvgSpa (Dest, Swath, Source)

Section 10. CRBASIC Programming Instructions

10-23

StdDevSpa
Used to find the standard deviation of an array.

Syntax
StdDevSpa(Dest, Swath, Source)

SortSpa
Sorts the elements of an array in ascending order.

Syntax
SortSpa (Dest, Swath, Source)

MaxSpa
Finds the maximum value in an array.

Syntax
MaxSpa(Dest, Swath, Source)

MinSpa
Finds the minimum value in an array.

Syntax
MinSpa (Dest, Swath, Source)

RMSSpa
Computes the RMS (root mean square) value of an array.

Syntax
RMSSpa (Dest, Swath, Source)

10.6.7 Other Functions
AddPrecise
Used in conjunction with MovePrecise, allows high precision totalizing of
variables or manipulation of high precision variables.

Syntax
AddPrecise (PrecisionVariable, X)

AvgRun
Stores a running average of a measurement.

Syntax
AvgRun (Dest, Reps, Source, Number)

Randomize
Initializes the random-number generator.

Syntax
Randomize (source)

RND
Generates a random number.

Syntax
RND (source)

Section 10. CRBASIC Programming Instructions

10-24

10.7 String Functions
& Concatenates string variables
+ Concatenates string and numeric variables

10.7.1 String Operations
String Constants

Constant strings can be used in expressions using quotation marks, i.e.
FirstName = “Mike”

String Addition
Strings can be concatenated using the ‘+’ operator, i.e

FullName = FirstName + “ “ + MiddleName + “ “ + LastName

String Subtraction
String1-String2 results in an integer in the range of -255..+255.

String Conversion to / from Numeric
Conversion of Strings to Numeric and Numeric to Strings is done
automatically when an assignment is made from a string to a numeric or a
numeric to a string, if possible.

String Comparison Operators
The comparison operators =, >,<,<>, >= and <= operate on strings.

String Output Processing
The Sample() instruction will convert data types if source data type is
different than the Sample() data type. Strings are disallowed in all output
processing instructions except Sample().

10.7.2 String Commands
ASCII
Returns the ASCII value of a character in a string.

Syntax
Variable = ASCII (ASCIIString(1,1,X))

CHR
Insert an ANSI character into a string.

Syntax
CHR (Code)

CheckSum
Returns a checksum signature for the characters in a string.

Syntax
Variable = CheckSum (ChkSumString, ChkSumType, ChkSumSize)

FormatFloat
Converts a floating point value into a string.

Syntax
String = FormatFloat (Float, FormatString)

Section 10. CRBASIC Programming Instructions

10-25

HEX
Returns a hexadecimal string representation of an expression.

Syntax
Variable = HEX (Expression)

HexToDec
Converts a hexadecimal string to a float or integer.

Syntax
Variable = HexToDec (Expression)

InStr
Find the location of a string within a string.

Syntax
Variable = InStr (Start, SearchString, FilterString, SearchOption)

LTrim
Returns a copy of a string with no leading spaces.

Syntax
variable = LTrim (TrimString)

Left
Returns a substring that is a defined number of characters from the left side of
the original string.

Syntax
variable = Left (SearchString, NumChars)

Len
Returns the number of bytes in a string.

Syntax
Variable = Len (StringVar)

LowerCase
Converts a string to all lowercase characters.

Syntax
String = LowerCase (SourceString)

Mid
Returns a substring that is within a string.

Syntax
String = Mid (SearchString, Start, Length)

RTrim
Returns a copy of a string with no trailing spaces.

Syntax
variable = RTrim (TrimString)

Right
Returns a substring that is a defined number of characters from the right side of
the original string.

Syntax
variable = Right (SearchString, NumChars)

Section 10. CRBASIC Programming Instructions

10-26

Replace
Searches a string for a substring, and replace that substring with a different
string.

Syntax
variable = Replace (SearchString, SubString, ReplaceString)

StrComp
Compares two strings by subtracting the characters in one string from the
characters in another

Syntax
Variable = StrComp (String1, String2)

SplitStr
Splits out one or more strings or numeric variables from an existing string.

Syntax
SplitStr (SplitResult, SearchString, FilterString, NumSplit,
SplitOption)

Trim
Returns a copy of a string with no leading or trailing spaces.

Syntax
variable = Trim (TrimString)

UpperCase
Converts a string to all uppercase characters

Syntax
String = UpperCase (SourceString)

10.8 Clock Functions
Within the CR1000, time is stored as integer seconds and nanoseconds into the
second since midnight, January 1, 1990.

ClockReport
Sends the datalogger clock value to a remote datalogger in the PakBus
network.

Syntax
ClockReport (ComPort, RouterAddr, PakBusAddr)

ClockSet
Sets the datalogger clock from the values in an array

Syntax
ClockSet (Source)

DaylightSaving
Defines daylight saving time. Determines if daylight saving time has begun or
ended. Optionally advances or turns-back the datalogger clock one hour.

Syntax
variable = DaylightSaving (DSTSet, DSTnStart, DSTDayStart,
DSTMonthStart, DSTnEnd, DSTDayEnd, DSTMonthEnd, DSTHour)

Section 10. CRBASIC Programming Instructions

10-27

DaylightSavingUS
Determine if US daylight saving time has begun or ended. Optionally advance
or turn-back the datalogger clock one hour.

Syntax
variable = DaylightSavingUS (DSTSet)

IfTime
Returns a number indicating True (-1) or False (0) based on the datalogger's
real-time clock.

Syntax
IfTime (TintoInt, Interval, Units)

PakBusClock
Sets the datalogger clock to the clock of the specified PakBus device.

Syntax
PakBusClock (PakBusAddr)

RealTime
Parses year, month, day, hour, minute, second, micro-second, day of week,
and/or day of year from the datalogger clock.

Syntax
RealTime (Dest)

TimeIntoInterval
Returns a number indicating True (-1) or False (0) based on the datalogger's
real-time clock.

Syntax
Variable = TimeIntoInterval (TintoInt, Interval, Units)
-or-
If TimeIntoInterval (TintoInt, Interval, Units)

Timer
Returns the value of a timer.

Syntax
variable = Timer(TimNo, Units, TimOpt)

10.9 Voice Modem Instructions
Refer to the Campbell Scientific voice modem manuals for complete
information.

DialVoice
Defines the dialing string for a COM310 voice modem.

Syntax
DialVoice (DialString)

VoiceBeg, EndVoice
Mark the beginning and ending of voice code executed when the datalogger
detects a ring from a voice modem.

Syntax
VoiceBeg
 voice code to be executed
EndVoice

Section 10. CRBASIC Programming Instructions

10-28

VoiceHangup
Hangs up the voice modem.

Syntax
VoiceHangup

VoiceKey
Recognizes the return of characters 1 - 9, *, or #. VoiceKey is often used to add
a delay, which provides time for the message to be spoken, in a
VoiceBegin/EndVoice sequence.

Syntax
VoiceKey (TimeOut*IDH_Popup_VoiceKey_Timeout)

VoiceNumber
Returns one or more numbers (1 - 9) terminated by the # or * key.

Syntax
VoiceNumber (TimeOut*IDH_POPUP_VoiceKey_Timeout)

VoicePhrases
Provides a list of phrases for VoiceSpeak

Syntax
VoicePhrases(PhraseArray, Phrases)

VoiceSetup
Controls the hang-up of the COM310 voice modem.

Syntax
VoiceSetup (HangUpKey, ExitSubKey, ContinueKey, SecsOnLine,
UseTimeout, CallOut)

VoiceSpeak
Defines the voice string that should be spoken by the voice modem.

Syntax
VoiceSpeak ("String" + Variable + "String"…, Precision)

10.10 Custom Keyboard and Display Menus
Note that custom menus are constructed with the following syntax before the
BeginProg instruction.
DisplayMenu ("MenuName", AddToSystem)
 MenuItem ("MenuItemName", Variable)
 MenuPick (Item1, Item2, Item3...)
 DisplayValue ("MenuItemName", tablename.fieldname)
 SubMenu (MenuName)
 MenuItem ("MenuItemName", Variable)
 EndSubMenu
EndMenu

BeginProg
 (Program Body)
EndProg

Section 10. CRBASIC Programming Instructions

10-29

DisplayMenu … EndMenu
Marks the beginning and ending of a custom menu.

Syntax
DisplayMenu ("MenuName", AddToSystem)
 menu definition
EndMenu

MenuItem
Defines the name and associated measurement value for an item in a custom
menu.

Syntax
MenuItem ("MenuItemName", Variable)

MenuPick
Creates a list of selectable options that can be used when editing a MenuItem
value.

Syntax
MenuPick (Item1, Item2, Item3...)

DisplayValue
Defines the name and associated data table value or variable for an item in a
custom menu.

Syntax
DisplayValue ("MenuItemName", Expression)

SubMenu … EndSubMenu
Defines the beginning and ending of a second level menu for a custom menu.

Syntax
DisplayMenu ("MenuName", 100)
 SubMenu ("MenuName")
 menu definition
 EndSubMenu
EndMenu

10.11 Serial Input / Output
Read more! See Section 11.8 Serial Input.

MoveBytes
Moves binary bytes of data into a different memory location when translating
big endian to little endian data.

Syntax
MoveBytes (Destination, DestOffset, Source, SourceOffset,
NumBytes)

SerialClose
Closes a communications port that was previously opened by SerialOpen.

Syntax
SerialClose (ComPort)

SerialFlush
Clears any characters in the serial input buffer.

Syntax
SerialFlush (ComPort)

Section 10. CRBASIC Programming Instructions

10-30

SerialIn
Sets up a communications port for receiving incoming serial data.

Syntax
SerialIn (Dest, ComPort, TimeOut, TerminationChar,
MaxNumChars)

SerialInBlock
Stores incoming serial data. This function returns the number of bytes received.

Syntax
SerialInBlock (ComPort, Dest, MaxNumberBytes)

SerialInChk
Returns the number of characters available in the datalogger serial buffer.

Syntax
SerialInChk (ComPort)

SerialInRecord
Reads incoming serial data on a COM port and stores the data in a destination
variable.

Syntax
SerialInRecord (COMPort, Dest, SyncChar, NBytes, EndWord,
RecsBack)

SerialOpen
Sets up a datalogger port for communication with a non-PakBus device.

Syntax
SerialOpen (ComPort, BaudRate, Format, TXDelay, BufferSize)

SerialOut
Transmits a string over a datalogger communication port.

Syntax
SerialOut (ComPort, OutString, WaitString, NumberTries, TimeOut)

SerialOutBlock
Send binary data out a communications port. Used to support a transparent
serial talk-through mode.

Syntax
SerialOutBlock (ComPort, Expression, NumberBytes)

10.12 Peer-to-Peer PakBus Communications
Read more! See Section 12 PakBus Overview for more information. Also see
Campbell Scientific PakBus Networking Guide available at
www.campbellsci.com.

Peer-to-peer PakBus instructions enable the datalogger to communicate with
other PakBus devices. Instructions specify a COM port and a PakBus address.
If the route to the device is not yet known, a direct route through the specified
COM port is first tried. If the route is through a PakBus neighbor that must
first be dialed, use DialSequence() to define and establish the route.

The PakBus Address is a variable that can be used in CRBASIC like any other
variable.

Section 10. CRBASIC Programming Instructions

10-31

The ComPort parameter sets a default communications port when a route to the
remote node is not known. Enter one of the following commands:

ComRS-232
ComME
Com310
ComSDC7
ComSDC8
ComSDC10
ComSDC11
Com1 (C1,C2)
Com2 (C3,C4)
Com3 (C5,C6)
Com4 (C7,C8)

Baud rate on asynchronous ports (ComRS-232, ComME, Com1, Com2, Com3,
and Com4) will default to 9600 unless set otherwise by SerialOpen(), or if the
port is opened by an incoming PakBus packet at some other baud rate.

The baud rate parameter on asynchronous ports is restricted to 300, 1200,
4800, 9600, 19200, 38400, 57600, 115200, with 9600 the default.

In general, PakBus instructions write a result code to a variable indicating
success or failure. Success sets the result code to 0. Otherwise, the result code
increments. If communication succeeds but an error is detected, a negative
result code is set. See CRBASIC Editor Help for an explanation of error codes.

The Timeout parameter in these instructions is in units of 0.01 seconds. If 0 is
used, then the default timeout defined by the time of the best route is used. Use
PakBusGraph “Hop Metrics” to calculate this time.

For instructions returning a result code, retries can be coded with CRBASIC
logic as shown in the GetVariables example in EXAMPLE 10.12-1:

EXAMPLE 10.12-1. CRBASIC Code: Programming for retries in PakBus peer-to-peer
communications.

For I = 1 to 3
 GetVariables (ResultCode,….)
 if ResultCode = 0 Exit For
Next

These communication instructions wait for a response or timeout before the
program moves on to the next instruction. However, they can be used in a
SlowSequence scan, which will not interfere with the execution of other
program code. Optionally, the ComPort parameter can be negated, which will
cause the instruction not to wait for a response or timeout. This will make the
instruction execute faster but any data that it retrieves and the result code will
be set when the communication is complete.

Broadcast
Sends a broadcast message to a PakBus network.

Syntax
Broadcast (ComPort, Message)

Section 10. CRBASIC Programming Instructions

10-32

ClockReport
Sends the datalogger clock value to a remote datalogger in the PakBus
network.

Syntax
ClockReport (ComPort, RouterAddr, PakBusAddr)

DataGram
Initializes a SerialServer / DataGram / PakBus application in the datalogger
when a program is compiled.

Syntax
DataGram (ComPort, BaudRate, PakBusAddr, DestAppID,
SrcAppID)

DialSequence … EndDialSequence
Defines the code necessary to route packets to a PakBus device.

Syntax
DialSequence (PakBusAddr)

DialSuccess = DialModem (ComPort, DialString, ResponseString)

EndDialSequence (DialSuccess)

GetDataRecord
Retrieves the most recent record from a data table in a remote PakBus
datalogger and stores the record in the CR1000.

Syntax
GetDataRecord(ResultCode, ComPort, NeighborAddr, PakBusAddr,
Security, Timeout, Tries, TableNo, DestTableName)

GetVariables
Retrieves values from a variable or variable array in a data table of a PakBus
datalogger.

Syntax
GetVariables (ResultCode, ComPort, NeighborAddr, PakBusAddr,
Security, TimeOut, "TableName", "FieldName", Variable, Swath)

Network
In conjunction with SendGetVariables, configures destination dataloggers in a
PakBus network to send and receive data from the host.

Syntax
Network (ResultCode, Reps, BeginAddr, TimeIntoInterval, Interval,
Gap, GetSwath, GetVariable, SendSwath, SendVariable)

PakBusClock
Sets the datalogger clock to the clock of the specified PakBus device.

Syntax
PakBusClock (PakBusAddr)

Route
Returns the neighbor address of (or the route to) a PakBus datalogger.

Syntax
variable = Route (PakBusAddr)

Section 10. CRBASIC Programming Instructions

10-33

Routes
Returns a list of known dynamic routes for a PakBus datalogger that has been
configured as a router in a PakBus network.

Syntax
Routes (Dest)

SendData
Sends the most recent record from a data table to a remote PakBus device.

Syntax
SendData (ComPort, RouterAddr, PakBusAddr, DataTable)

SendFile
Sends a file to another PakBus datalogger.

Syntax
SendFile (ResultCode, ComPort, NeighborAddr, PakBusAddr,
Security, TimeOut, "LocalFile", "RemoteFile")

SendGetVariables
Sends an array of values to the host PakBus datalogger, and / or retrieve an
array of data from the host datalogger.

Syntax
SendGetVariables (ResultCode, ComPort, RouterAddr, PakBusAddr,
Security, TimeOut, SendVariable, SendSwath, GetVariable,
GetSwath)

SendTableDef
Sends the table definitions from a data table to a remote PakBus device.

Syntax
SendTableDef (ComPort, RouterAddr, PakBusAddr, DataTable)

SendVariables
Sends value(s) from a variable or variable array to a data table in a remote
datalogger.

Syntax
SendVariables (ResultCode, ComPort, RouterAddr, PakBusAddr,
Security, TimeOut, "TableName", "FieldName", Variable, Swath)

StaticRoute
Defines a static route to a PakBus datalogger.

Syntax
StaticRoute (ComPort, NeighborAddr, PakBusAddr)

TimeUntilTransmit
The TimeUntilTransmit instruction returns the time remaining, in seconds,
before communication with the host datalogger.

Syntax
TimeUntilTransmit

Section 10. CRBASIC Programming Instructions

10-34

10.13 Variable Management
FindSpa
Searches a source array for a value and returns the value’s position in the array.

Syntax
FindSpa (SoughtLow, SoughtHigh, Step, Source)

Move
Moves the values in a range of variables into difference variables or fills a
range of variables with a constant.

Syntax
Move (Dest, DestReps, Source, SourceReps)

10.14 File Management
Commands to access and manage files stored in CR1000 memory.

CalFile
Stores variable data, such as sensor calibration data, from a program into a
non-volatile CR1000 memory file (CRD, CPU:drive, or USR: drive). CalFile
pre-dates and is not used with the FieldCal function.

Syntax
CalFile (Source/Dest, NumVals, "Device:filename", Option)

FileClose
Closes a FileHandle created by FileOpen.

Syntax
FileClose (FileHandle)

FileList
Returns a list of files that exist on the specified drive.

Syntax
FileList (Drive,DestinationArray)

FileManage
Manages program files from within a running datalogger program.

Syntax
FileManage ("Device: FileName", Attribute)

FileOpen
Opens an ASCII text file or a binary file for writing or reading.

Syntax
FileHandle = FileOpen ("FileName", "Mode", SeekPoint)

FileRead
Reads a file referenced by FileHandle and stores the results in a variable or
variable array.

Syntax
FileRead (FileHandle, Destination, Length)

FileReadLine
Reads a line in a file referenced by a FileHandle and stores the result in a
variable or variable array.

Syntax
FileReadLine (FileHandle, Destination, Length)

Section 10. CRBASIC Programming Instructions

10-35

FileRename
Changes the name of file on the CR1000’s CPU:, USR:, or CRD: drives.

Syntax
FileRename(drive:OldFileName, drive:NewFileName)

FileSize
Returns the size of the file in the previously opened file referenced by the
FileHandle parameter.

Syntax
FileSize(FileHandle)

FileTime
Returns the time the file specified by the FileHandle was created.

Syntax
Variable = FileTime(FileHandle)

FileWrite
Writes ASCII or binary data to a file referenced in the program by FileHandle.

Syntax
FileWrite (FileHandle, Source, Length)

Include
Inserts code from a file (Filename) at the position of the Include() instruction at
compile time. Include cannot be nested.

Syntax
Include ("Device:Filename")

NewFile
Determines if a file stored on the datalogger has been updated since the
instruction was last run. Typically used with image files.

Syntax
NewFile (NewFileVar, “FileName”)

RunProgram
Runs a datalogger program file from the active program file.

Syntax
RunProgram ("Device:FileName", Attrib)

10.15 Data Table Access and Management
Commands to access and manage data stored in data tables, including Public
and Status tables.

FileMark
Inserts a filemark into a data table.

Syntax
FileMark (TableName)

GetRecord
Retrieves one record from a data table and stores the results in an array.

Syntax
GetRecord (Dest, TableName, RecsBack)

Section 10. CRBASIC Programming Instructions

10-36

ResetTable
Used to reset a data table under program control.

Syntax
ResetTable (TableName)

SetStatus ("FieldName", Value)
Changes the value for a setting in the datalogger Status table.

Syntax
SetStatus ("FieldName", Value)

TableName.FieldName
Accesses a specific field from a record in a table

Syntax
TableName.FieldName (FieldNameIndex, RecordsBack)

TableName.Output
Determine if data was written to a specific DataTable the last time the
DataTable was called.

Syntax
TableName.Output(1,1)

TableName.Record
Determines the record number of a specific DataTable record.

Syntax
TableName.Record(1,n)

TableName.TableSize
Returns the number of records allocated for a data table

Syntax
TableName.TableSize(1,1)

TableName.TableFull
Indicates whether a fill and stop table is full or whether a ring-mode table has
begun overwriting its oldest data.

Syntax
TableName.TableFull(1,1)

TableName.TimeStamp
Returns the time into an interval or a timestamp for a record in a specific
DataTable.

Syntax
TableName.TimeStamp(m,n)

TableName.EventCount
Returns the number of data storage events that have occurred for an event
driven data table.

Syntax
TableName.EventCount(1,1)

WorstCase
Saves one or more "worst case" data storage events into separate tables. Used
in conjunction with DataEvent.

Syntax
WorstCase (TableName, NumCases, MaxMin, Change, RankVar)

Section 10. CRBASIC Programming Instructions

10-37

10.16 Information Services
Email, IP SMS, and Web Page Services.

Read more! See Section 11.2 Information Services.

EMailRecv
Polls an SMTP server for email messages and store the message portion of the
email in a string variable.

Syntax
variable = EMailRecv ("ServerAddr", "ToAddr", "FromAddr",
"Subject", Message, "Authen", "UserName", "PassWord", Result)

EMailSend
Sends an email message to one or more email addresses via an SMTP server.

Syntax
variable = EMailSend ("ServerAddr", "ToAddr", "FromAddr",
"Subject", "Message", "Attach", "UserName", "PassWord", Result)

FTPClient
Sends or retrieves a file via FTP.

Syntax
Variable = FTPClient ("IPAddress", "User", "Password",
"LocalFileName", "RemoteFileName", PutGetOption)

HTTPOut
Defines a line of HTML code to be used in a datalogger generated HTML file.

Syntax
WebPageBegin ("WebPageName", WebPageCmd)
 HTTPOut ("<p>html string to output " + variable + " additional

string to output</p>")
 HTTPOut ("<p>html string to output " + variable + " additional

string to output</p>")
WebPageEnd

IPTrace
Writes IP debug messages to a string variable.

Syntax
IPTrace (Dest)

NetworkTimeProtocol
Synchronizes the datalogger clock with an Internet time server.

Syntax
variable = NetworkTimeProtocol (NTPServer, NTPOffset,
NTPMaxMSec)

PPPOpen
Establishes a PPP connection with a server.

Syntax
variable = PPPOpen

PPPClose
Closes an opened PPP connection with a server.

Syntax
variable = PPPClose

Section 10. CRBASIC Programming Instructions

10-38

TCPOpen
Sets up a TCP/IP socket for communication.

Syntax
TCPOpen (IPAddr, TCPPort, TCPBuffer)

TCPClose
Closes a TCPIP socket that has been set up for communication.

Syntax
TCPClose (TCPSocket)

UDPOpen
Opens a port for transferring UDP packets.

Syntax
UDPOpen(IPAddr, UDPPort, UDPBuffsize)

UDPDataGram
Sends packets of information via the UDP communications protocol.

Syntax
UDPDataGram(IPAddr, UDPPort, SendVariable, SendLength,
RcvVariable, Timeout)

WebPageBegin … WebPageEnd
Declare a web page that will be displayed when a request for the defined
HTML page comes from an external source.

Syntax
WebPageBegin ("WebPageName", WebPageCmd)
 HTTPOut ("<p>html string to output " + variable + " additional

string to output</p>")
 HTTPOut ("<p>html string to output " + variable + " additional

string to output</p>")
WebPageEnd

10.17 Modem Control
Read more! For help on datalogger initiated telecommunication, see
Section 11.9 Callback.

DialModem
Sends a modem dial string out a datalogger communications port.

Syntax
DialModem (ComPort, BaudRate, DialString, ResponseString)

ModemCallback
Initiates a call to a computer via a phone modem.

Syntax
ModemCallback (Result, COMPort, BaudRate, Security, DialString,
ConnectString, Timeout, RetryInterval, AbortExp)

ModemHangup … EndModemHangup
Enclose code that should be run when a COM port hangs up communication.

Syntax
ModemHangup (ComPort)
 instructions to be run upon hang-up
EndModemHangup

Section 10. CRBASIC Programming Instructions

10-39

10.18 SCADA
Read more! See Sections 15.1 DNP3 and 15.2 Modbus.

ModBusMaster
Sets up a datalogger as a ModBus master to send or retrieve data from a
ModBus slave.

Syntax
ModBusMaster (ResultCode, ComPort, BaudRate, ModBusAddr,
Function, Variable, Start, Length, Tries, TimeOut)

ModBusSlave
Sets up a datalogger as a ModBus slave device.

Syntax
ModBusSlave (ComPort, BaudRate, ModBusAddr, DataVariable,
BooleanVariable)

DNP
Sets up a CR1000 as a DNP slave (outstation/server) device.

Syntax
DNP (ComPort, BaudRate, Addr)

DNPUpdate
Determines when the DNP slave will update arrays of DNP elements.
Specifies the address of the DNP master to send unsolicited responses.

Syntax
DNPUpdate(DNPAddr)

DNPVariable
Sets up the DNP implementation in a DNP slave CR1000.

Syntax
DNPVariable (Array, Swath, Object, Variation, Class, Flag, Event
Expression, Number of Events)

10.19 Calibration Functions
Calibrate
Used to force calibration of the analog channels under program control.

Syntax
Calibrate (Dest, Range) (parameters are optional)

FieldCal
Sets up the datalogger to perform a calibration on one or more variables in an
array.

Syntax
FieldCal (Function, MeasureVar, Reps, MultVar, OffsetVar, Mode,
KnownVar, Index, Avg)

SampleFieldCal
Stores the values in the FieldCal file to a data table.

Syntax
DataTable (TableName, NewFieldCal, Size)
 SampleFieldCal
EndTable

Section 10. CRBASIC Programming Instructions

10-40

NewFieldCal
Triggers storage of FieldCal values when a new FieldCal file has been written.

Syntax
DataTable (TableName, NewFieldCal, Size)
 SampleFieldCal
EndTable

LoadFieldCal
Loads values from the FieldCal file into variables in the datalogger.

Syntax
LoadFieldCal (CheckSig)

FieldCalStrain
Sets up the datalogger to perform a zero or shunt calibration for a strain
measurement.

Syntax
FieldCalStrain (Function, MeasureVar, Reps, GFAdj, ZeromV/V,
Mode, KnownRS, Index, Avg, GFRaw, uStrainDest)

10.20 Satellite Systems Programming
Instructions for GOES, ARGOS, INMARSAT-C, OMNISAT. Refer to
satellite transmitter manuals available at www.campbellsci.com.

10.20.1 Argos
ArgosSetup
Sets up the datalogger for transmitting data via an Argos satellite.

Syntax
ArgosSetup (ResultCode, ST20Buffer, DecimalID, HexadecimalID,
Frequency)

ArgosData
Specifies the data to be transmitted to the Argos satellite.

Syntax
ArgosData (ResultCode, ST20Buffer, DataTable, NumRecords,
DataFormat)

ArgosTransmit
Initiates a single transmission to an Argos satellite when the instruction is
executed.

Syntax
ArgosTransmit (ResultCode, ST20Buffer)

ArgosError
Sends a "Get and Clear Error Message" command to the transmitter.

Syntax
ArgosError (ResultCode, ErrorCodes)

ArgosDataRepeat
Sets the repeat rate for the ArgosData instruction.

Syntax
ArgosDataRepeat (ResultCode, RepeatRate, RepeatCount,
BufferArray)

http://www.campbellsci.com/�

Section 10. CRBASIC Programming Instructions

10-41

10.20.2 GOES
GOESData
Sends data to a CSI GOES satellite data transmitter.

Syntax
GOESData (Dest, Table, TableOption, BufferControl, DataFormat)

GOESGPS
Stores GPS data from the satellite into two variable arrays.

Syntax
GOESGPS (GoesArray1(6), GoesArray2(7))

GOESSetup
Programs the GOES transmitter for communication with the satellite.

Syntax
GOESSetup (ResultCode, PlatformID, MsgWindow, STChannel,
STBaud, RChannel, RBaud, STInterval, STOffset, RInterval)

GOESStatus
Requests status and diagnostic information from a CSI GOES satellite
transmitter.

Syntax
GOESStatus (Dest, StatusCommand)

10.20.3 OMNISAT
OmniSatSTSetup
Sets up the OMNISAT transmitter to send data over the GOES or METEOSAT
satellite at a self-timed transmission rate.

Syntax
OmniSatSTSetup (ResultCodeST, ResultCodeTX, OmniPlatformID,
OmniMsgWindow, OmniChannel, OmniBaud, STInterval, STOffset)

OmniSatRandomSetup
Sets up the OMNISAT transmitter to send data over the GOES or METEOSAT
satellite at a random transmission rate.

Syntax
OmniSatRandomSetup (ResultCodeR, OmniPlatformID,
OmniChannel, OmniBaud, RInterval, RCount)

OmniSatData
Sends a table of data to the OMNISAT transmitter for transmission via the
GOES or METEOSAT satellite.

Syntax
OmniSatData (OmniDataResult, TableName, TableOption,
OmniBufferCtrl, DataFormat)

OmniSatStatus
Queries the transmitter for status information.

Syntax
OmniSatStatus (OmniStatusResult)

Section 10. CRBASIC Programming Instructions

10-42

10.20.4 INMARSAT-C
INSATSetup
Configures the OMNISAT-I transmitter for sending data over the INSAT-1
satellite.

Syntax
INSATSetup (ResultCode, PlatformID, RFPower)

INSATData
Sends a table of data to the OMNISAT-I transmitter for transmission via the
INSAT-1 satellite.

Syntax
INSATData (ResultCode, TableName, TX_Window, TX_Channel)

INSATStatus
Queries the transmitter for status information.

Syntax
INSATStatus (ResultCode)

This is a blank page.

11-1

Section 11. Programming Resource
Library

11.1 Field Calibration of Linear Sensors
(FieldCal)

Calibration increases accuracy of a measurement device by adjusting its output,
or the measurement of its output, to match independently verified quantities.
Adjusting a sensor output directly is preferred, but not always possible or
practical. By adding FieldCal() or FieldCalStrain() instructions to the CR1000
program, a user can easily adjust the measured output of a linear sensors by
modifying multipliers and offsets.

Once programmed in the CR1000, calibration functions are accessed through a
software wizard (LoggerNet | Connect | Tools | Calibration Wizard) or through
a numeric monitor procedure using keypad or software. The numeric monitor
procedure, though somewhat arcane, is utilized in the examples below to
illustrate calibration functions and procedures.

LoggerNet calibration wizard does not yet support
FieldCalStrain().

11.1.1 CAL Files
Calibration data is stored automatically in CAL files in CR1000 memory,
becoming the source for calibration factors to a CR1000 program when
requested with the LoadFieldCal instruction.

A CAL file is created automatically on the same drive and given the same
name (with .cal extension) as the program that creates and uses it, e.g.,
CPU:MyProg.CR1 generates CPU:MyProg.cal.

CAL files are created if a program using FieldCal() or FieldCalStrain() does
not find an existing compatible CAL file. Files are updated with each
successful calibration and contain multiplier and offset factors and information
for the LoggerNet Calibration Wizard. If the user creates a data storage output
table in the CR1000 program, a calibration history will be maintained.

CAL files created by FieldCal() and FieldCalStrain() differ from
files created by the CalFile() instruction (Section 10.14 File
Management).

NOTE

NOTE

Section 11. Programming Resource Library

11-2

11.1.2 CRBASIC Programming
Field calibration functionality is utilized through either:

FieldCal() -- the principal instruction used for non-strain gage type
sensors. One instruction is entered for each sensor to be calibrated.

or

FieldCalStrain() -- the principal instruction used for strain gages
measuring microstrain. One instruction is entered for each gage to be
calibrated.

with two supporting instructions:

LoadFieldCal() -- an optional instruction that evaluates the validity of, and
loads values from a CAL file.

SampleFieldCal -- an optional data storage output instruction that writes
the latest calibration values to a data table (not to the CAL file).

and a reserved Boolean variable:

NewFieldCal -- a reserved Boolean variable under CR1000 control used
to optionally trigger a data storage output table after a calibration has
succeeded.

See CRBASIC Editor Help for operational details on CRBASIC instructions.

11.1.3 Calibration Wizard Overview
The LoggerNet Field Calibration Wizard steps through the calibration process
by performing the mode variable changes and measurements automatically.
The user sets the sensor to known values and inputs those values into the
Wizard.

When a program with FieldCal()instructions is running (FieldCalStrain to be
implemented in later versions of LoggerNet), select “LoggerNet | Connect |
Tools | Calibration Wizard” to start the wizard. A list of measurements utilized
in any FieldCal instruction in the program is shown.

11.1.4 Manual Calibration Overview
Manual calibration is accomplished by changing the value of the FieldCal() or
FieldCalStrain() mode variable through the CR1000KD keyboard display or
LoggerNet numeric monitor. The datalogger does not check for out of bounds
values in mode variables. Normal mode variable entries are restricted to “1” or
“4”.

Section 11. Programming Resource Library

11-3

11.1.4.1 Single-point Calibrations (zero or offset)
Use the following general procedure to adjust offsets (y-intercepts) with single-
point calibrations:

1) Ensure mode variable = 0 or 6 before starting.
2) Place the sensor into zeroing or offset condition
3) Set mode variable = 1 to start calibration

Mode Variable Interpretation
> 0 and ≠ 6 calibration in progress
< 0 calibration encountered an error
2 calibration in process
6 calibration complete.

11.1.4.2 Two-point Calibrations (multiplier / gain)
Use the following general procedure to adjust multipliers (slopes) and offsets
(y-intercepts) with two-point calibrations:

Ensure mode variable = 0 or 6 before starting.
If Mode variable > 0 and ≠ 6 then calibration in progress.
If Mode variable < 0 then calibration encountered an error.

1) Place sensor into first known point condition.
2) Set Mode variable = 1 to start first part of calibration.

Mode variable = 2 during the first point calibration.
Mode variable = 3 when the first point is completed.

3) Place sensor into second known point condition.
4) Set Mode variable = 4 to start second part of calibration.

Mode variable = 5 during second point calibration.
Mode variable = 6 when calibration process completes.

11.1.5 FieldCal() Demonstration Programs
FieldCal() has the following calibration options:

Zero
Offset
Two Point Slope and Offset
Two Point Slope Only

Demonstration programs are provided as a way to become familiar with the
FieldCal() features at the test bench without actual sensors. Sensor signals are
simulated by a CR1000 excitation channel. To reset tests, go to LoggerNet |
Connect | Tools | File Control and delete .cal files, then send the demonstration
program again to the CR1000.

11.1.5.1 Zero (Option 0)
Case: A sensor measures the relative humidity of air. Multiplier is known to
be stable, but sensor offset drifts and requires regular zeroing in a desiccated

Section 11. Programming Resource Library

11-4

chamber. The following procedure zeros the RH sensor to obtain the
calibration report shown.

Calibration Report for Air RH Sensor

 Initial Calibration 1 Month Calibration

mV Output 1000 1050

Desiccated Chamber 0 % 0 %

Multiplier .05 % / mV .05 % / mV

Offset -50 % -52.5 %

Reading % 0 %

Send the program in EXAMPLE 11.1-1 to the CR1000. To simulate the RH
sensor, place a jumper wire between channels EX1 and SE8 (4L).

Using the CR1000KD keyboard or software numeric monitor, change the value
in variable CalibMode to 1 to start calibration. When CalibMode increments to
6, calibration is complete.

Change the mV variable to 1050, then repeat the calibration to see how drift is
easily zeroed.

EXAMPLE 11.1-1. FieldCal zeroing demonstration program.

'Jumper EX1 to SE8(4L) to simulate a sensor

Public mV 'Excitation mV Output
Public KnownRH 'Known Relative Humidity
Public CalMode 'Calibration Trigger

Public Multiplier 'Multiplier (Starts at .05 mg / liter / mV, does not change)
Public Offset 'Offset (Starts at zero, not changed)
Public RH 'Measured Relative Humidity

'Data Storage Output of Calibration Data -- stored whenever a calibration occurs
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

Section 11. Programming Resource Library

11-5

BeginProg

 Multiplier = .05
 Offset = 0
 KnownRH = 0

 LoadFieldCal(true) 'Load the CAL File, if possible

 Scan(100,mSec,0,0)

 'Simulate measurement by exciting channel Vx/EX1
 ExciteV(Vx1,mV,0)

 'Make the calibrated measurement
 VoltSE(RH,1,mV2500,8,1,0,250,Multiplier,Offset)

 'Perform a calibration if CalMode = 1
 FieldCal(0,RH,1,Multiplier,Offset,CalMode,KnownRH,1,30)

 'If there was a calibration, store it into a data table
 CallTable(CalHist)

 NextScan

EndProg

11.1.5.2 Offset (Option 1)
Case: A sensor measures the salinity of water. Multiplier is known to be
stable, but sensor offset drifts and requires regular offset correction using a
standard solution. The following procedure offsets the measurement to obtain
the calibration report shown.

Calibration Report for Salinity Sensor

 Initial Calibration 1 week Calibration

mV Output 1350 mV 1345 mV

Standard Solution 30 mg/l 30 mg/l

Multiplier .05 mg/l/mV .05 mg/l/mV

Offset -37.50 mg/l -37.23 mg/l

Reading 30 mg/l 30 mg/l

Send the program in EXAMPLE 11.1-2 to the CR1000. Put a jumper wire
between channels Vx/EX1 and SE8 (4L).

Using the CR1000KD keyboard or software numeric monitor, change the value
in variable CalibMode to 1 to start calibration. When CalibMode increments to
6, the calibration is complete.

Section 11. Programming Resource Library

11-6

EXAMPLE 11.1-2. FieldCal offset demonstration program.

'Jumper EX1 to SE8(4L) to simulate a sensor

Public mV 'Excitation mV Output
Public KnownSalt 'Known Salt Concentration
Public CalMode 'Calibration Trigger

Public Multiplier 'Multiplier (Starts at .05 mg / liter / mV, does not change)
Public Offset 'Offset (Starts at zero, not changed)
Public SaltContent 'Salt Concentration

'Data Storage Output of Calibration Data -- stored whenever a calibration occurs
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

BeginProg

 Multiplier = .05
 Offset = 0
 KnownSalt = 0

 LoadFieldCal(true) 'Load the CAL File, if possible

 Scan(100,mSec,0,0)

 'Simulate measurement by exciting channel EX1
 ExciteV(Vx1,mV,0)

 'Make the calibrated measurement
 VoltSE(SaltContent,1,mV2500,8,1,0,250,Multiplier,Offset)

 'Perform a calibration if CalMode = 1
 FieldCal(1,SaltContent,1,Multiplier,Offset,CalMode,KnownSalt,1,30)

 'If there was a calibration, store it into a data table
 CallTable(CalHist)

 NextScan

EndProg

11.1.5.3 Two Point Slope and Offset (Option 2)
Case: A meter measures the volume of water flowing through a pipe.
Multiplier and offset are known to drift, so a two-point calibration is required
periodically at known flow rates. The following procedure adjusts multiplier
and offset to correct for meter drift as shown in the calibration report below.
Note that the flow meter outputs milliVolts inversely proportional to flow.

Section 11. Programming Resource Library

11-7

Calibration Report for Y Flow Meter

Initial Calibration

1 Week Calibration
(5% Drift)

Output @ 30 l/s 300 mV 285 mV

Output @ 10 l/s 550 mV 522 mV

Multiplier -0.0799 l/s/mV -.0841 l/s/mV

Offset 53.90 l 53.92 l

Send the program in EXAMPLE 11.1-3 to the CR1000. Put a jumper wire
between channels Vx/EX1 and SE8 (4L). Using the CR1000KD keyboard or
software numeric monitor, change variables as indicated below:

mV = 300
KnownFlow = 30
CalibMode = 1

When CalibMode increments to 3, the first step of the calibration is complete.
Change variables as indicated below to complete the second step:

mV = 550
KnownFlow = 10
CalibMode = 4

When CalibMode has incremented to 6, the calibration is finished. Repeat the
procedure using the 5% shift values from the calibration report.

Section 11. Programming Resource Library

11-8

EXAMPLE 11.1-3. FieldCal multiplier and offset demonstration program.

'Jumper Vx/EX1 to SE8(4L) to simulate a sensor

Public mV 'Excitation mV Output
Public KnownFlow 'Known Water Flow
Public CalMode 'Calibration Trigger

Public Multiplier 'Sensitivity
Public Offset 'Offset (Starts at zero, not changed)
Public WaterFlow 'Water Flow

'Data Storage Output of Calibration Data -- stored whenever a calibration occurs
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

BeginProg

 Multiplier = 1
 Offset = 0
 KnownFlow = 0

 LoadFieldCal(true) 'Load the CAL File, if possible

 Scan(100,mSec,0,0)

 'Simulate measurement by exciting channel Vx/EX1
 ExciteV(Vx1,mV,0)

 'Make the calibrated measurement
 VoltSE(WaterFlow,1,mV2500,8,1,0,250,Multiplier,Offset)

 'Perform a calibration if CalMode = 1
 FieldCal(2,WaterFlow,1,Multiplier,Offset,CalMode,KnownFlow,1,30)

 'If there was a calibration, store it into a data table
 CallTable(CalHist)

 NextScan

EndProg

11.1.5.4 Two Point Slope Only (Option 3)
Some measurement applications do not require determination of offset. Wave
form analysis, for example, may only require relative data to characterize
change.

Case: A soil water sensor is to be use to detect a pulse of water moving
through soil. To adjust the sensitivity of the sensor, two soil samples, with
volumetric water contents of 10 and 35, will provide two known points.

The following procedure sets the sensitivity of a simulated soil water content
sensor.

Section 11. Programming Resource Library

11-9

Send the program in EXAMPLE 11.1-4. Start the first step of the simulated
calibration by entering:

mV = 175 mV
KnownWC = 10
CalibMode = 1

The first step is complete when CalibMode increments to 3.

Calibration continues when starting the second step by entering:

mV = 700
KnownWC = 35
CalibMode = 4

Sensitivity calibration is complete when CalibMode increments automatically
to 6.

EXAMPLE 11.1-4. FieldCal multiplier only demonstration program.

'Jumper Vx/EX1 to SE8(4L) to simulate a sensor

Public mV 'Excitation mV Output
Public KnownWC 'Known Water Content
Public CalMode 'Calibration Trigger

Public Multiplier 'Sensitivity
Public Offset 'Offset (Starts at zero, not changed)
Public RelH2OContent 'Relative Water Content

'Data Storage Output of Calibration Data -- stored whenever a calibration occurs
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

Section 11. Programming Resource Library

11-10

BeginProg

 Multiplier = 1
 Offset = 0
 KnownWC = 0

 LoadFieldCal(true) 'Load the CAL File, if possible

 Scan(100,mSec,0,0)

 'Simulate measurement by exciting channel Vx/EX1
 ExciteV(Vx1,mV,0)

 'Make the calibrated measurement
 VoltSE(RelH2OContent,1,mV2500,8,1,0,250,Multiplier,Offset)

 'Perform a calibration if CalMode = 1
 FieldCal(3,RelH2OContent,1,Multiplier,Offset,CalMode,KnownWC,1,30)

 'If there was a calibration, store it into a data table
 CallTable(CalHist)

 NextScan

EndProg

11.1.6 FieldCalStrain() Demonstration Program
Strain gage systems consist of one or more strain gages, a Wheatstone bridge in
which the gage resides, and a measurement device such as the CR1000
datalogger. The FieldCalStrain() instruction facilitates shunt calibration of
strain gage systems, and is designed exclusively for strain applications wherein
microstrain is the unit of measure. The FieldCal() instruction (Section 11.1.5
FieldCal() Demonstration Programs) is typically used in non-microstrain
applications.

Shunt calibration of strain gage systems is common practice. However, the
technique provides many opportunities for misapplication and
misinterpretation. This section is not intended to be a primer on shunt
calibration theory, but only to introduce use of the technique with the CR1000
datalogger. Campbell Scientific strongly urges users to study shunt calibration
theory from other sources. A thorough treatment of strain gages and shunt
calibration theory is available from Vishay at:

http://www.vishay.com/brands/measurements_group/guide/indexes/tn_index.htm

Campbell Scientific applications engineers also have resources that may assists
users with strain gage applications.

FieldCalStrain() Shunt Calibration Concepts:

1) Shunt calibration does not calibrate the strain gage itself.

2) Shunt calibration does compensate for long leads and non-linearity in the
Wheatstone bridge. Long leads reduce sensitivity because of voltage drop.

Section 11. Programming Resource Library

11-11

FieldCalStrain uses the known value of the shunt resistor to adjust the gain
(multiplier / span) to compensate. The gain adjustment (S) is incorporated
by FieldCalStrain with the manufacturer’s gage factor (GF), becoming the
adjusted gage factor (GFadj), which is then used as the gage factor in
StrainCalc(). GF is stored in the CAL file and continues to be used in
subsequent calibrations. Non-linearity of the bridge is compensated for by
selecting a shunt resistor with a value that best simulates a measurement
near the range of measurements to be made. Strain gage manufacturers
typically specify and supply a range of resistors available for shunt
calibration.

3) Shunt calibration verifies the function of the CR1000.

4) The zero function of FieldCalStrain() allows the user to set a particular
strain as an arbitrary zero, if desired. Zeroing is normally done after the
shunt cal.

Zero and shunt options can be combined through a single CR1000 program.

The following program is provided to demonstrate use of FieldCalStrain()
features. If a strain gage configured as shown in FIGURE 11.1-1 is not
available, strain signals can be simulated by building the simple circuit shown
in FIGURE 11.1-1, substituting a 1000 Ω potentiometer for the strain gage. To
reset calibration tests, go to LoggerNet | Connect | Tools | File Control and
delete .cal files, then send the demonstration program again to the CR1000.

Case: A 1000 Ω strain gage is placed into a Wheatstone bridge at position R1
as shown in FIGURE 11.1-1. The resulting circuit is a quarter bridge strain
gage with alternate shunt resistor (Rc) positions shown. Gage specifications
indicate that the gage factor is 2.0, and that with a 249 kΩ shunt, measurement
should be about 2000 microstrain.

FIGURE 11.1-1. Quarter bridge strain gage schematic with
RC resistor shunt locations shown.

Send Program EXAMPLE 11.1-5 to a CR1000 datalogger.

Section 11. Programming Resource Library

11-12

EXAMPLE 11.1-5. FieldCalStrain() calibration demonstration.

'Program to measure quarter bridge strain gage
'Measurements
Public Raw_mVperV
Public MicroStrain

'Variables that are arguments in the Zero Function
Public Zero_Mode
Public Zero_mVperV

'Variables that are arguments in the Shunt Function
Public Shunt_Mode
Public KnownRes
Public GF_Adj
Public GF_Raw

'---------------------------- Tables----------------------------
DataTable(CalHist,NewFieldCal,50)
 SampleFieldCal
EndTable

'\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM ////////////////////////////

BeginProg

 'Set Gage Factors
 GF_Raw = 2.1
 GF_Adj = GF_Raw 'The adj Gage factors are used in the calculation of uStrain

 'If a calibration has been done, the following will load the zero or Adjusted GF from the Calibration file
 LoadFieldCal(1)

 Scan(100,mSec,100,0)
 'Measure Bridge Resistance
 BrFull (Raw_mVperV,1,mV25,1,Vx1,1,2500,True ,True ,0,250,1.0,0)

 'Calculate Strain for 1/4 Bridge (1 Active Element)
 StrainCalc(microStrain,1,Raw_mVperV,Zero_mVperV,1,GF_Adj,0)

 'Steps (1) & (3): Zero Calibration
 'Balance bridge and set Zero_Mode = 1 in numeric monitor. Repeat after shunt calibration.
 FieldCalStrain(10,Raw_mVperV,1,0,Zero_mVperV,Zero_Mode,0,1,10,0,microStrain)

 'Step (2) Shunt Calibration
 'After zero calibration, and with bridge balanced (zeroed), set KnownRes = to gage resistance
 '(resistance of gage at rest), then set Shunt_Mode = 1. When Shunt_Mode increments to 3,
 'position shunt resistor and set KnownRes = shunt resistance, then set Shunt_Mode = 4.
 FieldCalStrain(13,MicroStrain,1,GF_Adj,0,Shunt_Mode,KnownRes,1,10,GF_Raw,0)

 CallTable CalHist
 Next Scan
EndProg

Section 11. Programming Resource Library

11-13

11.1.6.1 Quarter bridge Shunt (Option 13)
With EXAMPLE 11.1-5 sent to CR1000, and with strain gage stable, use the
CR1000KD keyboard or software numeric monitor to change the value in
variable KnownRes to the nominal resistance of the gage, 1000 Ω. Set
Shunt_Mode to 1 to start the two-point shunt calibration. When Shunt_Mode
increments to 3, the first step is complete.

To complete the calibration, shunt R1 with the 249 kΩ resistor. Set variable
KnownRes to 249,000. Set variable Shunt_mode to 4. When variable
Shunt_mode = 6, shunt calibration is complete.

FIGURE 11.1-2. Strain gage shunt calibration started.

FIGURE 11.1-3. Strain gage shunt calibration finished.

11.1.6.2 Quarter bridge Zero (Option 10)
Continuing from 9.8.6.1, keep the 249 kΩ resistor in place to simulate a strain.
Using the CR1000KD keyboard or software numeric monitor, change the value
in variable Zero_Mode to 1 to start the zero calibration as shown if FIGURE
11.1-4. When Zero_Mode increments to 6, zero calibration is complete as
shown in FIGURE 11.1-5.

Section 11. Programming Resource Library

11-14

FIGURE 11.1-4. Starting zero procedure.

FIGURE 11.1-5. Zero procedure finished.

11.2 Information Services
When used in conjunction with an NL115 network link interface, or a cell
modem with the PPP/IP key enabled, the CR1000 has TCP/IP functionality.
This provides the following capabilities:

• PakBus communication over TCP/IP with LoggerNet or PC400 software.

• Callback (datalogger initiated communication) using the CRBASIC
TCPOpen() function.

• Datalogger-to-datalogger communication.

• HTTP protocol and Web Server.

• FTP Server and Client for transferring files to and from the datalogger.

• TelNet Server for debugging and entry into terminal mode.

• SNMP for NTCIP and RWIS applications.

• PING.

• Micro-serial server using CRBASIC Serial I/O functions with TCP sockets
as “COM Ports”.

Section 11. Programming Resource Library

11-15

• Modbus/TCP/IP, Master and Slave.

• DHCP Client to obtain an IP address.

• DNS Client to query a DNS server to map a name into an IP address.

• SMTP to send email messages.

For additional information, see the NL115 manual and CRBASIC Editor Help.

11.2.1 PakBus Over TCP/IP and Callback
Once the hardware has been configured, basic PakBus communication over
TCP/IP is possible. These functions include sending and retrieving programs,
setting the datalogger clock, collecting data, and displaying at the most current
record from the CR1000 data tables.

Data call-back and datalogger-to-datalogger communications are also possible
over TCP/IP. For details and example programs for callback and datalogger-
to-datalogger communications, see the NL115 manual.

11.2.2 HTTP Web Server
The CR1000 has a default home page built into the operating system. As
shown in FIGURE 11.2-1, this page provides links to the newest record in all
tables, including the status table, public table, and data tables. Links are also
provided for the last 24 records in each data table. If fewer than 24 records
have been stored in a data table, the link will display all data in that table.

FIGURE 11.2-1. CR1000 Default Home Page

Newest Record links refresh automatically every 10 seconds. Last 24 Records
link must be manually refreshed to see new data.

Section 11. Programming Resource Library

11-16

Links will also be created automatically for any HTML, XML, and JPEG files
found on the datalogger in the CPU:, USR:, and CRD: drives. To copy files to
these drives, choose File Control from the Tools menu found in PC400 or in
the Connect screen of LoggerNet.

Although the default home page cannot be accessed by the user for editing, it
can be replaced with HTML code to customize the look of the home page. To
replace the default home page, save the new home page under the name
default.html and copy it to the datalogger. It can be copied to the CPU:, USR:,
or CRD: drive with File Control. Deleting default.html from the datalogger
will cause the CR1000 to use its original default home page.

The CR1000 can be programmed to generate HTML or XML code that can be
viewed by the web browser. EXAMPLE 11.2-1 shows how to use the
CRBASIC keywords WebPageBegin/WebPageEnd and HTTPOut to create
HTML code. Note that for HTML code requiring the use of quote marks,
CHR(32) is used, while regular quote marks are used to define the beginning
and end of alphanumeric strings inside the parentheses of the HTTPOut
instruction. For additional information, see the CRBasic editor Help.

EXAMPLE 11.2-1. CRBASIC Code. HTML

'CR1000 Series Datalogger
Dim Commands As String * 200
Public Time(9), RefTemp,
Public Minutes As String, Seconds As String, Temperature As String

DataTable (CR1Temp,True,-1)
 DataInterval (0,1,Min,10)
 Sample (1,RefTemp,FP2)
 Average (1,RefTemp,FP2,False)
EndTable

'Default HTML Page
WebPageBegin ("default.html",Commands)
 HTTPOut("<html>")
 HTTPOut ("<style>body {background-color: oldlace}</style>")
 HTTPOut ("<body><title>Campbell Scientific CR1000 Datalogger</title>")
 HTTPOut ("<h2>Welcome To the Campbell Scientific CR1000 Web Site!</h2>")
 HTTPOut ("<tr><td style="+ CHR(34) +"width: 290px"+ CHR(34) +">")
 HTTPOut ("")
 HTTPOut("<img src="+ CHR(34) +"/CPU/SHIELDWEB2.jpg"+ CHR(34) + "width="+ CHR(34) +"128"+CHR(34)+"height="+
 CHR(34)+"155"+ CHR(34) + "class="+ CHR(34) +"style1"+ CHR(34) + "/></td>")
 HTTPOut ("<p><h2> Current Data:</h2></p>")
 HTTPOut ("<p>Time: " + time(4) + ":" + minutes + ":" + seconds + "</p>")
 HTTPOut ("<p>Temperature: " + Temperature + "</p>")
 HTTPOut ("<p><h2> Links:</h2></p>")
 HTTPOut ("<p>Monitor</p>")
 HTTPOut ("</body>")
 HTTPOut ("</html>")
WebPageEnd

'Monitor Web Page
WebPageBegin("monitor.html",Commands)
 HTTPOut("<html>")
 HTTPOut ("<style>body {background-color: oldlace}</style>")
 HTTPOut("<body>")
 HTTPOut("<title>Monitor CR1000 Datalogger Tables</title>")
 HTTPOut("<p><h2>CR1000 Data Table Links</h2></p>")
 HTTPOut("<p>Display Last 10
 Records from DataTable CR1Temp</p>")
 HTTPOut("<p>Current Record from
 CR1Temp Table</p>")

Section 11. Programming Resource Library

11-17

 HTTPOut("<p>Current Record from Public
 Table</p>")
 HTTPOut("<p>Current Record from Status
 Table</p>")
 HTTPOut("
<p>Back to the Home Page</p>")
 HTTPOut("</body>")
 HTTPOut("</html>")
WebPageEnd

BeginProg
 Scan (1,Sec,3,0)
 PanelTemp (RefTemp,250)
 RealTime (Time())
 Minutes=FormatFloat (Time(5),"%02.0f")
 Seconds=FormatFloat (Time(6),"%02.0f")
 Temperature=FormatFloat(RefTemp, "%02.02f")
 CallTable (CR1Temp)
 NextScan
EndProg

In this example program, the default home page was replaced by using
WebPageBegin to create a file called default.html. The new default home page
created by the program appears as shown in FIGURE 11.2-2 looks like this:

FIGURE 11.2-2. Home Page Created using
WebPageBegin() Instruction

The Campbell Scientific logo in the web page comes from a file called
SHIELDWEB2.JPG. That file must be transferred to the datalogger’s CPU
drive using File Control. The datalogger can then access the graphic for
display on the web page.

A second web page, shown in FIGURE 11.2-3 called monitor.html was created
by the example program that contains links to the CR1000 data tables:

Section 11. Programming Resource Library

11-18

FIGURE 11.2-3. Monitor Web Page Generated By Datalogger Program

11.2.3 FTP Server
The CR1000 automatically runs an FTP server. This allows Windows Explorer
to access the CR1000 file system via FTP, with the “drives” on the CR1000
being mapped into directories or folders. The “root directory” on the CR1000
can include CPU, USR or CRD. USR is a user defined directory that is created
by allocating memory for it in the USRDriveSize field of the Status table. If a
compact flash card is present in the NL115 and the CR1000 program uses the
CardOut instruction in one or more data tables, then the CRD directory will be
mapped.

The files on the CR1000 will be contained in one of these directories. Files can
be pasted and copied to and from the datalogger “drives” as is they were drives
on the PC. Files can also be deleted through FTP.

11.2.4 FTP Client
The CR1000 can act as an FTP Client to send a file or get a file from an FTP
server, such as another datalogger or web camera. This is done using the
CRBASIC FTPClient() instruction. See the NL115 manual or CRBASIC
Editor Help for details and sample programs.

Section 11. Programming Resource Library

11-19

11.2.5 Telnet
Telnet can be used to access the same commands as the Terminal Emulator in
the LoggerNet Connect screen’s Tools menu and the PC400. Start a Telnet
session by opening a command prompt and type in:

Telnet xxx.xxx.xxx.xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to
the CR1000.

11.2.6 SNMP
Simple Network Management Protocol (SNMP) is a part of the IP suite used
by NTCIP and RWIS for monitoring road conditions. The CR1000 supports
SNMP when a network device is attached.

11.2.7 Ping
Ping can be used to verify that the IP address for the network device connected
to the CR1000 is reachable. To use the Ping tool, open a command prompt on
a computer connected to the network and type in:

ping xxx.xxx.xxx.xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to
the CR1000.

11.2.8 Micro-Serial Server
The CR1000 can be configured to allow serial communication over a TCP/IP
port. This is useful when communicating with a serial sensor. See the NL115
manual and the CRBASIC Editor Help for the TCPOpen() instruction for more
information.

11.2.9 Modbus TCP/IP
The CR1000 can perform Modbus communication over TCP/IP using the
Modbus TCP/IP interface. To set up Modbus TCP/IP, specify port 502 as the
ComPort in the ModBusMaster() and ModBusSlave() instructions. See the
CRBASIC Editor Help for more information.

11.2.10 DHCP
When connected to a server with a list of IP addresses available for assignment,
the CR1000 will automatically request and obtain an IP address through the
Dynamic Host Configuration Protocol (DHCP). Once the address is assigned,
use DevConfig, PakBus Graph, Connect, or a CR1000KD to look in the
CR1000 Status table to see the assigned IP address. This is shown under the
field name IPInfo.

11.2.11 DNS
The CR1000 provides a Domain Name Server (DNS) client that can query a
DNS server to determine if an IP address has been mapped to a hostname. If it

Section 11. Programming Resource Library

11-20

has, then the hostname can be used interchangeably with the IP address in
some datalogger instructions.

11.2.12 SMTP
Simple Mail Transfer Protocol (SMTP) is the standard for e-mail
transmissions. The CR1000 can be programmed to send e-mail messages on a
regular schedule or based on the occurrence of an event.

11.3 SDI-12 Sensor Support
11.3.1 SDI-12 Transparent Mode

Using the SDI12Recorder instruction, the CR1000 interrogates SDI-12 sensors
attached to terminals C1, C3, C5, and C7. Several SDI-12 probes can be wired
to each terminal so long as each probe has a unique address and its own
SDI12Recorder instruction.

System operators can manually interrogate and enter settings in probes using
SDI-12 Transparent Mode as supported by the CR1000. Transparent mode is
useful in troubleshooting SDI-12 systems because it allows direct
communication with SDI-12 probes.

Transparent mode may need to wait for programmed datalogger commands to
finish before sending responses. While in the transparent mode, datalogger
programs may not execute. Datalogger security may need to be unlocked
before transparent mode can be activated.

Transparent mode is entered while the PC is in telecommunications with the
datalogger through a terminal emulator program. It is most easily accessed
through Campbell Scientific datalogger support software, but is also accessible
with terminal emulator programs such as Windows Hyperterminal. Datalogger
keyboards and displays cannot be used.

To enter the SDI-12 transparent mode, enter Terminal Emulator from
LoggerNet, PC400 or PC200W datalogger support software. A terminal
emulator screen is displayed. Click the “Open Terminal” button. A green
“Active” indicator appears as shown in FIGURE 11.3-1. Press <Enter> until
the CR1000 responds with the prompt “CR1000>”. Type “SDI12” at the
prompt (without the quotes) and press <Enter>. In response, the query “Enter
Cx Port 1, 3, 5 or 7” will appear. Enter the control port integer to which the
SDI-12 sensor is connected. An “Entering SDI12 Terminal” response indicates
that SDI-12 Transparent Mode is active.

Section 11. Programming Resource Library

11-21

FIGURE 11.3-1. Entering SDI-12 Transparent Mode
through LoggerNet Terminal Emulator

11.3.2 SDI-12 Command Basics
All commands can be issued through SDI-12 transparent mode.

All commands have three components: sensor address, command body, and
command termination.

Sensor address is a single character, and is always the first character of the
command or the subsequent response from the sensor. Usually, sensors are
shipped from the factory with a default address of zero.

Command body and subsequent responses are shown as a combination of
upper and lower case letters. The upper case letters are the fixed portion of the
command, while the lower case letters are the variables or values. All
commands use an exclamation point (!) as command terminator.

The CR1000 datalogger supports the entire suite of SDI-12 instructions as
summarized in TABLE 11.3-1, and defined by the SDI-12 Support Group.
Manufacturers establish the command set a specific sensor will respond. This
section discusses the most common commands including: address query,
address change, and sensor acknowledgment and identification. Various ways
to initiate measurement and report data are also discussed. For assistance with
other commands contact a Campbell Scientific Applications Engineer.

11.3.3 Addressing
Wiring more than one SDI-12 probe to a single port requires that each probe
have a unique address. Since the default address on most probes is 0,
additional probes will need the address changed. All SDI-12 version 1.3
probes accept an address of 0 - 9. If more than ten probes are connected to a
common port, lower case “a-z”, and upper case “A-Z” may also be used as
addresses.

Section 11. Programming Resource Library

11-22

11.3.3.1 Address Query Command
If the address of a particular sensor is unknown, use the Address Query
command to request the sensor identify itself. Get Unknown Address syntax is
“?!” (without the quotation marks), where the question mark is used as a
wildcard for the address, followed by the command terminator. The sensor
replies to the query with the address, “a”. Carriage-return <CR> and line-feed
<LF> are appended to all responses, although these are transparent to the user.

When using Get Unknown Address command, only one sensor can be
connected to the SDI-12 / control port.

11.3.3.2 Change Address Command
The command body for changing the sensor address is “Ab”, where “b” is the
desired new address. Thus the total command string is “aAb!”, where the
lower case “a” is the current address, which is followed by the command body
and then the command terminator. For example, to change an address from the
default address 0, to address 2, the command is “0A2!” In response, the sensor
responds with the “new” address “a”, or in this case “2”.

To subsequently change the address of this sensor to 4, the command is “2A4!”

11.3.3.3 Send Identification Command
Verify what sensor is being communicated with by using the Send
Identification command “I”. If using the default address of zero, the entire
command structure is: “0I!” The specific reply from a sensor will be defined
by the manufacturer, but will include the sensor’s address, the SDI-12 version,
and typically the manufacturer’s name, the sensor’s model number and version
number. Optionally it may also contain the serial number or other sensor
specific information.

An example of a response from the aI! command is:

013NRSYSINC1000001.2101 <CR><LF>

where,
Address = 0
SDI-12 version =1.3
Manufacturer = NRSYSINC
Sensor model = 100000
Sensor version = 1.2
Serial number = 101

11.3.4 Making Measurements
There are two ways to command sensors to take measurements. A standard
measurement has the command body of M[v], and the concurrent measurement
is initiated with C[v], where “v” is an optional number that allows for
variations to the measurement command. For either measurement command,
the response from the sensor will be in the form of “atttnn”, where

a = the sensor address

ttt = the time, in seconds, until the sensor will have the measurement(s) ready

Section 11. Programming Resource Library

11-23

nn = the number of values will be returned in one or more subsequent D
commands

The difference between the two commands is with what happens after the
response is returned to the logger. When running CRBASIC code, with the
standard M[v] command, the datalogger pauses its operations until the time
“ttt” expires, after which it immediately polls the sensor for those values, and
then continues with the remainder of its program. With the C[v] command, the
datalogger continues with its program without pausing, and queries the sensor
for its values on subsequent passes through its program (i.e., those that occur
after the time “ttt” expires). The datalogger immediately issues another C[v]
command to request a measurement, data from which will be requested on the
next scan. Note that these subsequent scans should be rapid enough that the
sensor is still holding those values in its registers before the sensor times out
and discards the data. This “time out” period is fixed by the sensor
manufacturer. In normal operations of the logger, for either measurement
command set, the datalogger issues the subsequent aD0! send data request,
without the user needing to request it. In transparent mode, however, the send
data command will need to be issued to see the values returned. The send data
command is discussed more fully below.

11.3.4.1 Start Measurement Command
The command body that tells a sensor to make measurements is in the form
M[v]. The [v] is an optional number, between 1 and 9, and if supported by the
sensor’s manufacturer will give variants of the basic measurement instruction.
Variants might include a way to change the units that the values are reported
(e.g., English standard to metric), or perhaps additional values (level and
temperature), or maybe a diagnostic of the sensor’s internal battery’s
condition. As mentioned before the response is in the form of “atttnn”.

An example of the entire syntax, for a sensor with the address of 5, might be:

5M! 500410

The response (“atttnn”) indicates that address 5 will have data ready in 4
seconds, and will report 10 values.

Using a variation of the measurement command might be 5M7! 500201 For
this hypothetical sensor, with [v] = 7, the sensor returns its internal battery
voltage. The response could be read as “address 5 will have data ready in 2
seconds, reporting one value.”

11.3.4.2 Start Concurrent Measurement Command
This command is new to Version 1.2 or higher of the SDI-12 Specification.
Older sensors, older loggers, or new sensors that do not meet v1.2
specifications will likely not support this command

The command body is C[v]. The interpretation of “v” is the same as in the
standard measurement command.

After retrieving data from a previous C! command whose timeout for getting
data has expired, the CR1000 will immediately issue another C! command
instead of waiting to do so in the next scan. By doing so, if the sensor timeout
is < the datalogger's scan interval, the C! command will be able to retrieve data

Section 11. Programming Resource Library

11-24

every scan, i.e., it will pick up the data from the measurement command issued
during the previous scan and, when the timeout has expired, issue the
measurement command whose data will be retrieved on the subsequent scan.

11.3.4.3 Aborting a Measurement Command
If after sending any measurement command (aM[v]! or aC[v]!) to a sensor, but
before it issues a response indicating that the data values are ready, a user can
abort the measurement by issuing any other valid command to the sensor.

11.3.5 Obtaining Measurement Values
11.3.5.1 Send Data Command

This command is used to get groups of data from the sensor. D0! is normally
issued automatically by the datalogger after any measurement command. In
transparent mode, the user asserts this command to obtain data. If the expected
number of data values are not returned in response to a D0! command, the data
logger issues D1!, D2!, etc., until all measurement values are received. The
limiting constraint is that the total number of characters that can be returned to
a D0! command is 35 characters (or 75 characters for a concurrent command).
If the number of characters exceed this limit, then the remainder of the
response are obtained with D1!. If that cannot capture the remainder of the
response within the 35 character limit, then D2! is issued, and so on.

11.3.5.2 Continuous Measurements Command
Sensors that are able to continuously monitor the phenomena to be measured,
such as a shaft encoder, do not require a measurement command (e.g., M!).
They can be read directly with the R commands (R0!... R9!) If a sensor cannot
perform continuous measurements, then it will only respond with the sensor’s
address, acknowledging that it has received but cannot comply with the
instruction.

Section 11. Programming Resource Library

11-25

TABLE 11.3-1. The SDI-12 basic command / response set.

Courtesy SDI-12 Support Group.

Name Command1 Response2
Break Continuous

spacing for at
least
12 milliseconds

None

Acknowledge Active a! a<CR><LF>
Send Identification aI! allccccccccmmmmmmvvvxxx...xx<CR><LF>
Change Address aAb! b<CR><LF> (support for this command is required only

if the sensor supports software changeable addresses)
Address Query ?! a<CR><LF>
Start Measurement3 aM! atttn<CR><LF>
Start Measurement and
Request CRC3

aMC! atttn<CR><LF>

Send Data aD0!
.
.
.
aD9!

a<values><CR><LF> or a<values><CRC><CR><LF>
a<values><CR><LF> or a<values><CRC><CR><LF>
a<values><CR><LF> or a<values><CRC><CR><LF>
a<values><CR><LF> or a<values><CRC><CR><LF>
a<values><CR><LF> or a<values><CRC><CR><LF>

Additional Measurements3 aM1!
.
.
.
aM9!

atttn<CR><LF>
atttn<CR><LF>
atttn<CR><LF>
atttn<CR><LF>
atttn<CR><LF>

Additional Measurements and
Request CRC3

aMC1! ...
aMC9!

atttn<CR><LF>

Start Verification3 aV! atttn<CR><LF>
Start Concurrent Measurement aC! atttnn<CR><LF>
Additional Concurrent
Measurements

aC1!
.
.
.
aC9!

atttnn<CR><LF>
atttnn<CR><LF>
atttnn<CR><LF>
atttnn<CR><LF>
atttnn<CR><LF>

Additional Concurrent
Measurements and Request
CRC

aCC1! ... aCC9!

atttnn<CR><LF>

Continuous Measurements aR0! ... aR9! a<values><CR><LF> (formatted like the D commands)
Continuous Measurements and
Request CRC

aRC0! ... aRC9! a<values><CRC><CR><LF> (formatted like the D
commands)

1 If the command terminator ‘!’ is not present in the command parameter, a measurement command will not be
issued. The SDI12Recorder() instruction, however, will still pick up data resulting from a previously issued
“C!” command.

2 Complete response string can be obtained when using the SDIRecorder() instruction by declaring the
Destination variable as String.
3This command may result in a service request.

Section 11. Programming Resource Library

11-26

11.3.6 SDI-12 Power Considerations
When a command is sent by the datalogger to an SDI-12 probe, all probes on
the same SDI-12 port will wake up. Only the probe addressed by the
datalogger will respond, however, all other probes will remain active until the
timeout period expires.

Example

Probe: Water Content

Power Usage:
 Quiescent: 0.25 mA
 Measurement: 120 mA
 Measurement Time: 15 s
 Active: 66 mA
 Timeout: 15 s

Probes 1, 2, 3, and 4 are connected to SDI-12 / Control Port 1.

The time line in TABLE 11.3-2 shows a 35 second power usage profile
example.

TABLE 11.3-2. Example Power Usage Profile
for a Network of SDI-12 Probes

 All Time
 Probes Out milliAmps Total
Sec Command Awake Expires 1 2 3 4 mA
1 1M! Yes 120 66 66 66 318
2 120 66 66 66 318
• • • • • •
• • • • • •
• • • • • •
14 120 66 66 66 318
15 Yes 120 66 66 66 318
16 1D0! Yes 66 66 66 66 264
17 66 66 66 66 264
• • • • • •
• • • • • •
• • • • • •
29 66 66 66 66 264
30 Yes 66 66 66 66 264
31 0.25 0.25 0.25 0.25 1
• • • • • •
• • • • • •
• • • • • •
35 0.25 0.25 0.25 0.25 1

Section 11. Programming Resource Library

11-27

For most applications, total power usage of 318 mA for 15 seconds is not
excessive, but if 16 probes were wired to the same SDI-12 port, the resulting
power draw would be excessive. Spreading sensors over several SDI-12
terminals will help reduce power consumption.

11.4 Subroutines
This section is not yet available.

11.5 Wind Vector
11.5.1 OutputOpt Parameters

In the CR1000 WindVector() instruction, the OutputOpt parameter is used to
define the values which will be stored. All output options result in an array of
values, the elements of which have “_WVc(n)” as a suffix, where n is the
element number. The array uses the name of the Speed/East variable as its
base. TABLE 11.5-1 lists and describes OutputOpt options.

TABLE 11.5-1. OutputOpt Options

Option Description

0 WVc(1) = Mean horizontal wind speed (S)

 WVc(2) = Unit vector mean wind direction (Θ1)

 WVc(3) = Standard deviation of wind direction σ(Θ1). Standard
deviation is calculated using the Yamartino algorithm. This option
complies with EPA guidelines for use with straight-line Gaussian
dispersion models to model plume transport.

1 WVc(1) = Mean horizontal wind speed (S)

 WVc(2) = Unit vector mean wind direction (Θ1)

2 WVc(1) = Resultant mean horizontal wind speed (U)

 WVc(2) = Resultant mean wind direction (Θu)

 WVc(3) = Standard deviation of wind direction σ(Θu). This
standard deviation is calculated using Campbell Scientific's wind
speed weighted algorithm. Use of the resultant mean horizontal wind
direction is not recommended for straight-line Gaussian dispersion
models, but may be used to model transport direction in a variable-
trajectory model.

3 WVc(1) = Unit vector mean wind direction (Θ1)

4 WVc(1) = Unit vector mean wind direction (Θ1)

 WVc(2) = Standard deviation of wind direction σ(Θu). This
standard deviation is calculated using Campbell Scientific's wind
speed weighted algorithm. Use of the resultant mean horizontal wind
direction is not recommended for straight-line Gaussian dispersion
models, but may be used to model transport direction in a variable-
trajectory model.

Section 11. Programming Resource Library

11-28

11.5.2 Wind Vector Processing
CR1000 WindVector instruction processes wind speed and direction from
either polar (wind speed and direction) or orthogonal (fixed East and North
propellers) sensors. It uses raw data to generate mean wind speed, mean wind
vector magnitude, and mean wind vector direction over a data storage interval.
Two different calculations of vector direction (and standard deviation of vector
direction) are available, one of which is weighted for wind speed.

When a wind speed sample is 0, the instruction uses 0 to process scalar or
resultant vector wind speed and standard deviation, but the sample is not used
in the computation of wind direction. The user may not want a sample less
than the sensor threshold used in the standard deviation. If this is the case,
write the datalogger program to check wind speed, and if it is less than the
threshold set the wind speed variable equal to 0 prior to calling the data table.

Standard deviation can be processed one of two ways: 1) using every sample
taken during the data storage interval (enter 0 for the Subinterval parameter), or
2) by averaging standard deviations processed from shorter sub-intervals of the
data storage interval. Averaging sub-interval standard deviations minimizes
the effects of meander under light wind conditions, and it provides more
complete information for periods of transition3.

Standard deviation of horizontal wind fluctuations from sub-intervals is
calculated as follows:

σ(Θ)=[((σΘ1)2+(σΘ2)2 ...+(σΘM)2)/M]1/2

where σ(Θ) is the standard deviation over the data storage interval, and σΘ1 ...
σΘM are sub-interval standard deviations.

A sub-interval is specified as a number of scans. The number of scans for a
sub-interval is given by:

Desired sub-interval (secs) / scan rate (secs)

For example if the scan rate is 1 second and the data interval is 60 minutes, the
standard deviation is calculated from all 3600 scans when the sub-interval is 0.
With a sub-interval of 900 scans (15 minutes) the standard deviation is the
average of the four sub-interval standard deviations. The last sub-interval is
weighted if it does not contain the specified number of scans.

3 EPA On-site Meteorological Program Guidance for Regulatory Modeling
Applications.

Section 11. Programming Resource Library

11-29

11.5.2.1 Measured Raw Data
Si = horizontal wind speed
Θi = horizontal wind direction
Uei = east-west component of wind
Uni = north-south component of wind
N = number of samples

11.5.2.2 Calculations

FIGURE 11.5-1. Input Sample Vectors

In FIGURE 11.5-1, the short, head-to-tail vectors are the input sample vectors
described by is and iΘ , the sample speed and direction, or by Uei and Uni, the
east and north components of the sample vector. At the end of data storage
interval T, the sum of the sample vectors is described by a vector of magnitude
U and direction Θu. If the input sample interval is t, the number of samples in
data storage interval T is t/TN = . The mean vector magnitude is N/UU = .

Scalar mean horizontal wind speed, S:

S=(Σsi)/N

where in the case of orthogonal sensors:

Si=(Uei
2+Uni

2)1/2

Unit vector mean wind direction, Θ1:

Θ1=Arctan (Ux/Uy)

where

Ux=(Σsin Θi)/N
Uy=(Σcos Θi)/N

sn

Θu

s 2

North

East

U

s1 s3

s 4

Section 11. Programming Resource Library

11-30

or, in the case of orthogonal sensors

Ux=(Σ(Uei/Ui))/N
Uy=(Σ(Uni/Ui))/N

where Ui=(Uei
2+Uni

2)1/2

Standard deviation of wind direction, σ(Θ1), using Yamartino algorithm:

σ(Θ1)=arc sin(ε)[1+0.1547 ε3]

where,

ε=[1-((Ux)2+(Uy)2)]1/2

and Ux and Uy are as defined above.

Resultant mean horizontal wind speed, U :

U =(Ue2+Un2)1/2

FIGURE 11.5-2. Mean Wind Vector

where for polar sensors:

Ue=(ΣSi Sin Θi)/N
Un=(ΣSi Cos Θi)/N

or, in the case of orthogonal sensors:

Ue=(ΣUei)/N
Un=(ΣUni)/N

Resultant mean wind direction, Θu:

Θu=Arctan (Ue/Un)

Standard deviation of wind direction, σ(Θu), using Campbell Scientific
algorithm:

σ(Θu)=81(1- U /S)1/2

UUn

Ue

Section 11. Programming Resource Library

11-31

The algorithm for σ(θu) is developed by noting (FIGURE 11.5-2) that

u' where;/sU)'(Cos iiiii Θ−Θ=Θ=Θ

FIGURE 11.5-3. Standard Deviation of Direction

The Taylor Series for the Cosine function, truncated after 2 terms is:

2/)'(1)'(Cos 2
ii Θ−≅Θ

For deviations less than 40 degrees, the error in this approximation is less than
1%. At deviations of 60 degrees, the error is 10%.

The speed sample can be expressed as the deviation about the mean speed,

S'ss ii +=

Equating the two expressions for Cos (θ‘) and using the previous equation for

is ;

)S's/(U2/)'(1 ii
2

i +=Θ−

Solving for 2
i)'(Θ , one obtains;

S/'s2S/'s)'(S/U22)'(ii
2

ii
2

i +Θ−−=Θ

Summing 2
i)'(Θ over N samples and dividing by N yields the variance of Θu.

Note that the sum of the last term equals 0.

∑ ∑
= =

Θ−−=Θ=Θσ
N

1i

N

1i
i

2
i

2
i

2 NS/)'s)'(()S/U1(2N/)'())u((

The term, ∑ Θ NS/)'s)'((i
2

i , is 0 if the deviations in speed are not
correlated with the deviation in direction. This assumption has been verified in
tests on wind data by CSI; the Air Resources Laboratory, NOAA, Idaho Falls,
ID; and MERDI, Butte, MT. In these tests, the maximum differences in

∑ −=ΘσΘ=Θσ 2/12/12
i))S/U1(2()u(and)N/)'(()u(

si

Θ'i
Θu

Ui
U

Section 11. Programming Resource Library

11-32

have never been greater than a few degrees.

The final form is arrived at by converting from radians to degrees (57.296
degrees/radian).

2/12/1)S/U1(81))S/U1(2()u(−=−=Θσ

11.6 CR1000KD Custom Menus
This section is not yet available.

11.7 Conditional Compilation
CRBASIC allows definition of conditional code that the compiler interprets
and includes at compile time. This feature is useful when the same program
code is to be used across multiple datalogger types, e.g., in both the CR1000
and CR3000. Pseudocode for this feature can be written as...

#Const Destination = “CR3000”
#If Destination = “CR3000” Then
 <code specific to the CR3000>
#ElseIf Destination = “CR1000” Then
 <code specific to the CR1000>
 #Else
 <code to include otherwise>
#EndIf

which allows the simple change of a constant to include the appropriate
measurement instructions.

All CRBASIC dataloggers accept program or Include() files with a .DLD
extension, which makes it possible to write a single file with conditional
compile statements to run in multiple loggers.

Code EXAMPLE 11.7-1 shows a sample program which demonstrates the use
of conditional compilation features in CRBASIC using the #If, #ElseIf, #Else
and #EndIf commands. Within the program are examples showing the use of
the predefined LoggerType constant and associated predefined logger constants
(CR3000, CR1000 etc...). The program can be loaded into a CR3000 / CR1000
/ CR800 series logger.

Section 11. Programming Resource Library

11-33

EXAMPLE 11.7-1. Use of Conditional Compile Instructions #If, #ElseIf, #Else and #EndIf

'Conditional Compilation Example for CR3000 / CR1000 / CR800 Series Dataloggers

'Here we choose to set program options based on the
'setting of a constant in the program.
Const ProgramSpeed = 2

#If ProgramSpeed = 1
 Const ScanRate = 1 '1 Second
 Const Speed = "1 Second"
#ElseIf ProgramSpeed = 2
 Const ScanRate = 10 '10 Seconds
 Const Speed = "10 Second"
#ElseIf ProgramSpeed = 3
 Const ScanRate = 30 '30 Seconds
 Const Speed = "30 Second"
#Else
 Const ScanRate = 5 '5 Seconds
 Const Speed = "5 Second"
#EndIf

'Here we choose a COM port depending on which
'logger type the program is running in.
#If LoggerType = CR3000
 Const SourcSerialPort = Com3
#ElseIf LoggerTypes = CR1000
 Const SourcSerialPort = Com2
#ElseIf LoggerType = CR800
 Const SourcSerialPort = Com1
#Else
 Const SourcSerialPort = Com1
#EndIf

'Public Variables.
Public ValueRead, SelectedSpeed As String * 50

'Main Program
BeginProg

 'Return the selected speed and logger type for display.
 #If LoggerType = CR3000
 SelectedSpeed = "CR3000 running at " & Speed & " intervals."
 #ElseIf LoggerTypes = CR1000
 SelectedSpeed = "CR1000 running at " & Speed & " intervals."
 #ElseIf LoggerType = CR800
 SelectedSpeed = "CR800 running at " & Speed & " intervals."
 #Else
 SelectedSpeed = "Unknown Logger " & Speed & " intervals."
 #EndIf

 'Open the serial port.
 SerialOpen (SourcSerialPort,9600,10,0,10000)

Section 11. Programming Resource Library

11-34

 'Main Scan.
 Scan (ScanRate,Sec,0,0)
 'Here we make a measurement using different parameters and a different
 'SE channel depending on the logger type the program is running in.
 #If LoggerType = CR3000
 VoltSe(ValueRead,1,mV1000,22,0,0,_50Hz,0.1,-30) 'This instruction is used if the logger is a CR3000
 #ElseIf LoggerType = CR1000
 VoltSe(ValueRead,1,mV2500,12,0,0,_50Hz,0.1,-30) 'This instruction is used if the logger is a CR1000
 #ElseIf LoggerType = CR800
 VoltSe(ValueRead,1,mV2500,3,0,0,_50Hz,0.1,-30) This instruction is used if the logger is a CR800 Series
 #Else
 ValueRead = NaN
 #EndIf
 NextScan

EndProg

11.8 Serial Input
This section is not yet available.

11.9 Callback
This section is not yet available.

11.10 TrigVar and Output Trigger Conditions
TrigVar is the third parameter in the DataTable() instruction.

TrigVar triggers Output Processing Instructions to store data to a data table
memory. TrigVar may or may not act alone. Other output trigger conditions
can be added using DataInterval() and DataEvent() instructions.

Flashback! Together, TrigVar and DataInterval grant functionality similar to
Flag 0 in the earlier generation mixed-array dataloggers.

For individual measurements to affect summary data, output processing
instructions such as Average() must be executed whenever the DataTable is
called from the program - normally once each Scan. For example, for an
average to be calculated for the hour, each measurement must be added to a
total over the hour. This accumulation of data is not affected by TrigVar.
TrigVar only controls the moment when the final calculation is performed and
the processed data (the average) is written to the data table. For this summary
moment to occur, TrigVar and all other conditions (i.e. DataInterval and
DataEvent) must be true. To restate, when TrigVar is false, output processing
instructions (e.g. Average()) perform intermediate processing but not their
final processing, and a new record will not be created.

Take Away: In many applications, output records are solely interval based and
TrigVar is set to TRUE always. In these applications DataInterval() is the sole
specifier of the output trigger condition.

Section 11. Programming Resource Library

11-35

EXAMPLE 11.10-1 lists CRBASIC code that uses TrigVar() rather than
DataInterval() to trigger data storage. TABLE 11.10-1 shows data produced by
the example code.

EXAMPLE 11.10-1. Using TrigVar to Trigger Data Storage

In this example, the variable “counter” is incremented by 1 each scan. The data table is called every
scan, which includes the Sample(), Average(), and Totalize() instructions. TrigVar is true when
counter = 2 or counter = 3. Data is stored when TrigVar is true. Data stored are the sample, average,
and total of the variable counter, which is equal to 0, 1, 2, 3, or 4 when the data table is called.

'CR1000 Series Datalogger

Public counter

DataTable (Test,counter=2 or counter=3,100)
 Sample (1,counter,FP2)
 Average (1,counter,FP2,False)
 Totalize (1,counter,FP2,False)
EndTable

BeginProg
 Scan (1,Sec,0,0)
 counter = counter+1
 If counter = 5 Then
 counter = 0
 EndIf
 CallTable Test
 NextScan
EndProg

TABLE 11.10-1. Data Generated by Code in EXAMPLE 11.10-1

Section 11. Programming Resource Library

11-36

11.11 Programming for Control
This section is not yet available.

11.12 NSEC Data Type
11.12.1 NSEC Application

NSEC data type consists of 8 bytes divided up as 4 bytes of seconds since 1990
and 4 bytes of nanoseconds into the second. NSEC is used when a LONG
variable being sampled is the result of the RealTime() instruction, or when the
sampled variable is a LONG storing time since 1990, such as results when
time-of-maximum or time-of-minimum is requested.

Specific uses include:

• Placing a timestamp in a second position in a record.

• Accessing a timestamp from a data table and subsequently storing it as part
of a larger data table. Maximum(), Minimum, and FileTime() instructions
produce a timestamp that may be accessed from the program after being
written to a data table. The time of other events, such as alarms, can be
stored using the RealTime() instruction.

• Accessing and storing a timestamp from another datalogger in a PakBus
network.

11.12.2 NSEC Options
NSEC is used in a CRBASIC program one of the following three ways. In all
cases, the time variable is only sampled with Sample() instruction reps = 1.

• Time variable dimensioned to (1). If the variable array (must be LONG) is
dimensioned to 1, the instruction assumes that the variable holds seconds
since 1990 and microseconds into the second is 0. In this instance, the
value stored is a standard datalogger timestamp rather than the number of
seconds since January 1990. EXAMPLE 11.12-1 shows NSEC used with
a time variable array of (1).

• Time variable dimensioned to (2). If the variable array (must be LONG) is
dimensioned to two, the instruction assumes that the first element holds
seconds since 1990 and the second element holds microseconds into the
second. EXAMPLE 11.12-2 shows NSEC used with a time variable array
of (2).

• Time variable dimensioned to (7). If the variable array (must be FLOAT
or LONG) is dimensioned to 7, and the values stored are year, month, day
of year, hour, minutes, seconds, and milliseconds. EXAMPLE 11.12-3
shows NSEC used with a time variable array of (7).

Section 11. Programming Resource Library

11-37

11.12.3 Example NSEC Programming
EXAMPLE 11.12-1. CRBASIC Code: Using NSEC data type on a 1 element array.

A timestamp is retrieved into variable TimeVar(1) as seconds since 00:00:00 1 January 1990.
Because the variable is dimensioned to 1, NSEC assumes the value = seconds since 00:00:00 1
January 1990.

Public PTemp
Public TimeVar(1) As Long

DataTable (FirstTable,True,-1)
 DataInterval (0,1,Sec,10)
 Sample (1,PTemp,FP2)
EndTable

DataTable (SecondTable,True,-1)
 DataInterval (0,5,Sec,10)
 Sample (1,TimeVar,Nsec)
EndTable

BeginProg
 Scan (1,Sec,0,0)
 TimeVar = FirstTable.TimeStamp
 CallTable FirstTable
 CallTable SecondTable
 NextScan
EndProg

EXAMPLE 11.12-2. CRBASIC Code: Using NSEC data type on a 2 element array.

TimeStamp is retrieved into variables TimeOfMaxVar(1) and TimeOfMaxVar(2). Because the
variable is dimensioned to 2, NSEC assumes TimeOfMaxVar(1) = seconds since 00:00:00 1 January
1990, and TimeOfMaxVar(2) = μsec into a second.

Public PTempC
Public MaxVar
Public TimeOfMaxVar(2) As Long

DataTable (FirstTable,True,-1)
 DataInterval (0,1,Min,10)
 Maximum (1,PTempC,FP2,False,True)
EndTable

DataTable (SecondTable,True,-1)
 DataInterval (0,5,Min,10)
 Sample (1,MaxVar,FP2)
 Sample (1,TimeOfMaxVar,Nsec)
EndTable

Section 11. Programming Resource Library

11-38

BeginProg
 Scan (1,Sec,0,0)
 PanelTemp (PTempC,250)
 MaxVar = FirstTable.PTempC_Max
 TimeOfMaxVar = FirstTable.PTempC_TMx
 CallTable FirstTable
 CallTable SecondTable
 NextScan
EndProg

EXAMPLE 11.12-3. CRBASIC Code: Using NSEC data type with a 7 element time array.

A timestamp is retrieved into variable rTime(1) through rTime(9) as year, month, day, hour, minutes,
seconds, and microseconds using the RealTime() instruction. The first seven time values are copied
to variable rTime2(1) through rTime2(7). Because the variables are dimensioned to 7 or greater,
NSEC assumes the first seven time factors in the arrays are year, month, day, hour, minutes,
seconds, and microseconds.

Public rTime(9) As Long '(or Float)
Public rTime2(7) As Long '(or Float)
Dim x

DataTable (SecondTable,True,-1)
 DataInterval (0,5,Sec,10)
 Sample (1,rTime,Nsec)
 Sample (1,rTime2,Nsec)
EndTable

BeginProg
 Scan (1,Sec,0,0)
 RealTime (rTime)
 For x = 1 To 7
 rTime2(x) = rTime(x)
 Next
 CallTable SecondTable
 NextScan
EndProg

12-1

Section 12. Memory and Data Storage
CR1000 memory consists of four storage media:

1. Internal Flash EEPROM
2. Internal Serial Flash
3. Internal SRAM
4. External Compact Flash (CF) (optional)

Table 10-1 illustrates the structure of CR1000 memory.

The CR1000 utilizes many memory features automatically. However, users
control, and should monitor, those areas of memory wherein data tables,
CRBASIC program files, and image files reside.

Data files should not be stored to the CPU: drive as it has a
limited number of write cycles. It should be used exclusively for
program files, calibration files, or files that will not be written
too frequently.

• Program files reside on Serial Flash CPU: drive or Compact Flash CRD:
drive.

• Data tables reside in SRAM. Copies of data tables are maintained in data
files on the CompactFlash CRD: drive when the CRBASIC program
includes the CardOut() instructions. A CRBASIC program is limited to 30
data tables, depending on size and available memory. When a new
program is compiled, the CR1000 checks that there is adequate space in
memory it references for the programmed data tables; a program that
requests more space than is available will not run.

• FieldCal files reside exclusively on the CPU: drive (Section 10.3.1).

• Image files reside exclusively on the USR: drive (Section 10.3.3).

NOTE

Section 12. Memory and Data Storage

12-2

TABLE 10-1. CR1000 Memory Allocation

NOTE: As of September 2007, all new CR1000s have 4 MB SRAM.

Internal Flash
EEPROM SRAM 2 or 4 MB

Device Configuration
Settings Backup
~ 1K

“CPU” Drive for files
~ 98K

Internal Serial Flash
128K or 512K

See Table 10-2.

A backup of all the Device Configuration Settings, such
as PakBus Address, Station Name, Beacon Intervals,
Neighbor lists, etc., rebuilt approximately every hour.

Serial flash is slower, but adequate for storing files.
When a program is compiled and run in SRAM, a copy
is also put here to be loaded on subsequent power-up.
Users can also store files, including program files, here
for future use. Shows up as “CPU:” in LoggerNet’s File
Control screen. Status Table field - CPUDriveFree

CRD: Drive resides on a Compact Flash (CF) card used
in an optional accessory CF module, which attaches to
the peripheral port. Cards should be industrial grade
and not exceed 2 Gbytes. If the DataTable declarations
in the CR1000 program use the CardOut instruction,
final storage data can also be stored to the CF card. The
CR1000 provides data first from internal CPU memory
and if additional records are needed (that have been
overwritten in CPU, the CR1000 sends it from the CF
card. Data as files can also be retrieved from the CF
card with the File Control utility, in which case it is
saved on the PC as a file in a binary format that must be
converted using CardConvert software.

Notes

External Compact
Flash (Variable size)

“CRD” Drive for files

Section 12. Memory and Data Storage

12-3

TABLE 10-2. CR1000 SRAM Memory

“Static” Memory used
by the operating
system regardless of
the user’s program.

Operating Settings
and Properties

User’s Program
operating memory

Variables
Constants

Auto-allocated final
storage tables

Fixed- size final
storage tables

COMMS Memory 1

COMMS Memory 2

USR: Drive

SRAM 2 or 4 MB
The operating system requires some memory in which to
operate. This memory is rebuilt at power-up, program re-
compile, and watchdog events.

Also known as the “Keep”, memory used to store Device
Configuration settings such as PakBus Address, Station
Name, Beacon Intervals, Neighbor lists, etc, as well as
dynamic properties such as the Routing Table,
communications time outs, etc.

Compiled user program currently running; rebuilt on
power-up, recompile, and watchdog events.

Memory for the public variables in the user’s program.
These values may persist across power-up, recompile,
and watchdog events if the PreserveVariables instruction
is in the running program.

Auto-allocated tables fill whatever memory is left over
from all other demands.

Memory for user’s fixed-size final storage tables.
Compile error occurs if insufficient memory available.

Construction and temporary storage of PakBus packets.

Constructed Routing Table: List of known nodes and
routing to them. Routers take more space than leaf nodes
because must remember routers’ neighbors. Increasing
the PakBusNodes field in the Status Table will increase
this allocation.

Memory manually allocated for use in storing files such
as images and FileRead/FileWrite operations. Shows up
as “USR:” in LoggerNet’s File Control screen. Status
Table field – USRDriveSize.

Notes

Section 12. Memory and Data Storage

12-4

12.1 Internal SRAM
SRAM (2 or 4 Mbytes) is powered by the internal CR1000 battery when main
power is disconnected so data remain in memory. SRAM data are erased when
a program is sent to the CR1000. Some SRAM is used by the operating
system.

The CR1000 can be programmed to store each measurement or, more
commonly, to store processed values such as averages, maxima, minima,
histograms, FFTs, etc. Storage can be programmed to occur periodically or
conditionally. Data are stored in data tables in SRAM as directed by the
CRBASIC program (Section 9.5 Structure). A data table can be configured as
ring memory or fill-and-stop. Ring memory allows the CR1000 to overwrite
the oldest data when the data table is full. Fill-and-stop configures the data
table to be filled, then subsequent data discarded.

In a CRBASIC program, the DataTable() instruction sets the size of the data
table or buffer area. A data file mirroring an SRAM data table can be stored on
a CF card by including the CardOut() instruction within the data table
declaration. When a CF card is used, SRAM also acts as the buffer area for
data written to the card.

12.2 CompactFlash® (CF)
When installing or removing the CFM100 or NL115
module, first turn off CR1000 power.

Removing a card from the CFM100 or NL115 while the CF
card is active can cause garbled data and can actually
damage the card. Always press the button to disable the
card for removal and wait for the green LED before
switching off the CR1000 power.

To prevent losing data, collect data from the CF card
before sending a program to the datalogger. When a
program is sent to the datalogger all data on the CF card is
erased.

CSI CF card modules connect to the CR1000 Peripheral Port. Each has a slot
for a Type I or Type II CF card. A CF card expands the CR1000’s storage
capacity. A maximum of 30 data tables can be created on a CF card.

CardConvert software, included with LoggerNet, PC400,
RTDAQ, and PC200W support software, converts CF card data
to the standard Campbell Scientific data format.

When a data table is sent to a CF card, a data table of the same name in SRAM
is used as a buffer for transferring data to the card. When the card is present,
the status table will show the size of the table on the card. If the card is
removed, the size of the table in SRAM will be shown.

When a new program is compiled that sends data to the CF card, the CR1000
checks if a card is present and if the card has adequate space for the data tables.

CAUTION

NOTE

Section 12. Memory and Data Storage

12-5

If the card has adequate space, the tables will be allocated and the CR1000 will
start storing data to them. If there is no card or if there is not enough space, the
CR1000 will warn that the card is not being used and will run the program,
storing the data in SRAM only. When a card with enough available memory is
inserted the CR1000 will create the data tables on the card and store the data
that is accumulated in SRAM.

The CR1000 uses either the FAT or the FAT 32 format for the CF cards.
Cards can be formatted in a PC or in a CF card module. When the CR1000
gets a request for data that is stored on a CF card, the CR1000 only looks for
the data in the CF card when the oldest data are requested or if the data are not
available in internal RAM.

12.3 Memory Drives
12.3.1 CPU:

CPU: drive is the default drive in CR1000 memory for storing programs and
calibration files. Currently about 100K when formatted.

12.3.2 CRD: (CF card memory)
CRD: drive is the default drive in CF memory used principally for storing data
files.

12.3.3 USR:
CR1000 final data storage memory can be partitioned to create a FAT32 USR:
drive, analogous to partitioning a second drive on a PC hard disk. The USR:
drive stores certain types of files to conserve limited CPU memory, which
should be reserved for datalogger programs, and to prevent interaction with
memory used to store data tables. The USR: drive is configured using
DevConfig settings or SetStatus() instruction in a CRBASIC program.
Partition USR: drive to at least 11264 bytes in 512 byte increments,. If the
value entered is not a multiple of 512 bytes, the size will be rounded up.

Once partitioned, USR: memory is reserved for the USR: drive and is not
affected by program recompilation or formatting of other drives. It will only
be reset if the USR: drive is formatted, a new operating system is loaded, or the
size of the USR: drive is changed. Size is changed manually or by loading a
program with a different size entered in a SetStatus() command.

Settings in the program will over-ride attempts to change the size
manually since the CR1000 restarts its program when the USR:
drive size is changed.

The USR: drive holds virtually any file type within the constraints of the size
of the drive and the limitations on filenames. Files stored on the USR: drive
include image files from cameras, such as the CC640, ASCII files used to hold
setup information for the logger program, or ASCII / binary files written by
the datalogger for retrieval by ftp and html files for viewing via web access.

The CR1000 user must manage the use of the USR: drive, either manually or
through a CRBASIC program, to ensure adequate space to store new files.

NOTE

Section 12. Memory and Data Storage

12-6

Filemanage() command is used within the CRBASIC program to remove files
from the USR: drive. Files are managed manually using the File Control tool
in LoggerNet. Files are collected by remote ftp connections (where there is a
TCP/IP connection to the logger), manually using the file control tool in
LoggerNet, or automatically using the LNCMD program supplied with
LoggerNet.

Two status table registers are used to monitor use and size of the USR: drive.
Bytes remaining are indicated in register “USRDriveFree.” Total size is
indicated in register “USRDriveSize.” Memory allocated to USR: drive, less
overhead for directory use, is shown in LoggerNet | Connect | File Control.

12.4 Memory Conservation
Each public variable in a CRBASIC program uses a little more than 200 bytes
of memory. Memory intensive programs may need to employ one or more of
the following memory saving techniques:

• Declaring variables using DIM instead of PUBLIC saves memory since
DIM variables do not require buffer allocation for data retrieval.

• Reduce arrays to the minimum size needed. Each variable, whether or not
part of an array, requires ≈250 fixed bytes of memory. Approximately 720
variables will fill all available memory.

• String concatenation should be confined to DIM variables when possible.

• Use variable arrays with aliases instead of individual Public statements for
unique names. Aliases consume less memory than unique variable names.

• Dimension string variables only to the size required by the program.

12.5 Memory Reset
CR1000 memory can be reset by entering 98765 in the status table field
“FullMemReset.” Memory reset performs the following functions:

Formats CPU:
Restores all settings to default
Initializes system variables
Clears all comms memory

12.6 File Control
Files in CR1000 memory (program, data, CAL, image) can be managed or
controlled with Campbell Scientific support software as summarized in
TABLE 12.6-1.

Section 12. Memory and Data Storage

12-7

TABLE 12.6-1. File Control Functions

File Control Functions Accessed Through

Sending programs to the
CR1000.

Send1, LN file control2, DevConfig3, CF
manual4, CF power-up5

Setting file attributes. See
TABLE 12.6-2.

LN file control2, CF power-up5,
FileManage()6.

Sending an OS to the CR1000.
Reset settings.

LN file control2, DevConfig3, CF automatic5

Sending an OS to the CR1000.
Preserve settings.

Send1, LN file control with default.cr12, CF
power-up with default.cr15

Formatting CR1000 memory
drives.

LN file control2, CF power-up5.

Retrieving programs from the
CR1000.

Connect7, LN file control2, CF manual4

Setting disposition of old CF
files

LN file control2, CF power-up5.

Deleting files from memory
drives.

LN file control2, CF power-up5.

Stopping program execution. LN file control2.

Renaming a file. FileRename()6

Time stamping a file. FileTime()6

List files. LN file control2, FileList()6

1LoggerNet, PC400, PC200W Program Send Button. See software Help.

2LoggerNet | Connect | Datalogger | File Control. See LoggerNet Help &
Section 8.1.

3Device Configuration Utility (DevConfig). See DevConfig Help & Section
8.1.

4Manual with CompactFlash(R). See Section 12.2.

5Automatic with CompactFlash(R) and Powerup.ini. See Section 12.6.2.

6CRBASIC commands. See Section 9.3.2 and CRBASIC Editor Help.

7LoggerNet | Connect | Receive Button. See LoggerNet Help.

Section 12. Memory and Data Storage

12-8

12.6.1 File Attributes
A feature of program files is the file attribute. TABLE 12.6-2 lists available
file attributes, their functions, and when attributes are typically used. For
example, a program file sent via the Send option in LoggerNet, PC400, or
PC200W, runs a) immediately and b) when power is cycled on the CR1000.
This functionality is invoked because Send sets two CR1000 file attributes on
the program file. These file attributes are “Run Now” and “Run on Power-up,”
together tagged as “Run Always.”

TABLE 12.6-2. CR1000 File Attributes

Attribute

Function

Attribute for Programs Sent to
CR1000 with:

Run Always
(Run on Power-
up + Run Now)

Runs now and
on power-up

a) Send1
b) LN file control2 with Run Now &
Run on Power-up checked.
c) CF power-up3 using commands 1 &
13 (see TABLE 12.6-3).

Run on Power-
up

Runs only on
power-up

a) LN file control2 with Run on Power-
up checked.
b) CF power-up3 using command 2 (see
TABLE 12.6-3).

Run Now Runs only when
file sent to
CR1000

a) LN file control2 with Run Now
checked.
b) CF power-up3 using commands 6 &
14 (see TABLE 12.6-3). But, if CF is
left in, program loads again from CF.

1LoggerNet, PC400, PC200W Program Send Button. See software Help.

2LoggerNet | Connect | Datalogger | File Control. See LoggerNet Help &
Section 8.1.

3Automatic on power-up of CR1000 with CompactFlash(R) and Powerup.ini.
See Section 12.6.2.

Associated with file attributes are options to either erase CF (CompactFlash®)
data files or not when the program is sent. Unlike data tables in the CR1000,
CF data is stored as a discrete file. While data tables in the CR1000 are erased
automatically when a program is received, their mirror image data files on the
CF (when present) can be preserved. Depending on the application, retention
of the CF data files may or may not be desirable. When sending a program
with Send, CF data files are always deleted before the program runs. The
pseudo code in FIGURE 12.6-1 summarizes the disposition of CR1000 data
depending on the CF data file option used.

Section 12. Memory and Data Storage

12-9

if “keep CF data”
 keep CF data from overwritten program
 if current program = overwritten program
 keep CPU data
 keep cache data
 else
 erase CPU data
 erase cache data
 end if
end if

if “erase CF data”
 erase CF data from overwritten program
 erase CPU data
 erase cache data
end if

FIGURE 12.6-1. Summary of the Effect of CF Data Options
on CR1000 Data.

12.6.2 CF Power-up
Hard Knocks in a Real World

Uploading an OS or program in the field can be challenging, particularly
during weather extremes. Heat, cold, snow, rain, altitude, sand in your eyes,
distance to hike - all can influence how easily programming with a laptop or
palm PC may be. One alternative is to simply carry a light weight CF card into
the field, on which a program or OS is written. Inserting a properly configured
CF card into a CR1000 CF module (CF100 or NL115), then cycling CR1000
power, will result in the OS or program automatically uploading and running
without further input from the user. OS upload from a CF card is very fast.
CAUTION. Test this option in the lab before going to the field to make sure
you have it configured correctly. Carry your laptop or palm PC with you, but
with CF Power-up, you will be overjoyed when you don’t need to pull the
computer out.

Power-up functions of CompactFlash(R) cards can include

a) Sending programs to the CR1000
b) Setting attributes of CR1000 program files
c) Setting disposition of old CF files
d) Sending an OS to the CR1000
e) Formatting memory drives
f) Deleting data files

Section 12. Memory and Data Storage

12-10

“Oh, what a tangled web we weave...” - Sir Walter Scott.

Back in the old days of volatile RAM, life was simple. Nasty at times, but
simple. You lose power, you lose program, variables, and data. Simple. You
re-start from scratch. The advent of non-volatile memory has saved a lot of
frustration in the field, but it requires thought in some applications. For
instance, if the CR1000 loses power, do you want it to power back up with the
same program, or another one? with variables intact or erased? with data intact
or erased?

The key to the CF power-up function is the powerup.ini file, which contains a
list of one or more command lines. At power-up, the powerup.ini command
line is executed prior to compiling the program. Powerup.ini performs three
operations:

1) Copies the specified program file to a specified memory drive.

2) Sets a file attribute on the program file

3) Optionally deletes CF data files from the overwritten (just previous)
program.

Powerup.ini takes precedence during power-up. Though it sets file attributes
for the programs it uploads, its presence on the CF does not allow those file
attributes to control the power-up process. To avoid confusion, either remove
the CF card or delete the powerup.ini file after the powerup.ini upload.

Creating and Editing Powerup.ini

Powerup.ini is created with a text editor, then saved as “powerup.ini”.

Some text editors (such as WordPad) will attach header
information to the powerup.ini file causing it to abort. Check the
text of a powerup.ini file with the CR1000KD to see what the
CR1000 actually sees.

Comments can be added to the file by preceding them with a single-quote
character (‘). All text after the comment mark on the same line is ignored.

Syntax
Syntax allows functionality comparable to File Control in LoggerNet.
Powerup.ini is a text file that contains a list of commands and parameters. The
syntax for the file is:

 Command,File,Device

where

 Command = one of the numeric commands in Table 1.
 File = file on CF associated with the action. Name can be up to 22

characters.
 Device = the device to which the associated file will be copied to.

Options are CPU:, USR:, and CRD:. If left blank or with invalid option,
will default to CPU:.

NOTE

Section 12. Memory and Data Storage

12-11

TABLE 12.6-3. Powerup.ini Commands

Command Description

1 Run always, preserve CF data files

2 Run on power-up

5 Format

6 Run now, preserve CF data files

9 Load OS (File = .obj)

13 Run always, erase CF data files now

14 Run now, erase CF data files now

By using PreserveVariables() instruction in the CR1000 CRBASIC program,
with options 1 & 6, data and variables can be preserved.

EXAMPLE 12.6-1. Powerup.ini code.

'Command = numeric power-up command
'File = file on CF associated with the action
'Device = the device to which File will be copied. Defaults to CPU:

'Command,File,Device
13,Write2CRD_2.cr1,CPU:

Applications

• Commands 1, 2, 6, 13, and 14 (Run Now and / or Run On Power-up). If a
device other than CRD: drive is specified, the file will be copied to that
device.

• Command 1, 2, 13 (Run On Power-up). If the copy (first application,
above) succeeds, the new Run On Power-up program is accepted. If the
copy fails, no change will be made to the Run On Power-up program.

• Commands 1, 6, 13, and 14 (Run Now). The Run Now program is
changed whether or not the copy (first application, above) occurs. If the
copy does succeed, the Run Now program will be opened from the device
specified.

• Commands 13 and 14 (Delete Associated Data). Since CRD:powerup.ini
is only processed at power-up, there is not a compiled program to delete
associated data for. The information from the last running program is still
available for the CR1000 to delete the files used by that program.

Section 12. Memory and Data Storage

12-12

Program Execution

After File is processed, the following rules determine what CR1000 program to
run:

1) If the Run Now program is changed then it will be the program that runs.
2) If no change is made to Run Now program, but Run on Power-up program

is changed, the new Run on Power-up program runs.
3) If neither Run on Power-up nor Run Now programs are changed, the

previous Run on Power-up program runs.

Example Power-up.ini Files

EXAMPLE 12.6-2 through EXAMPLE 12.6-7 are example powerup.ini files.

EXAMPLE 12.6-2. Run Program on Power-up.

’Copy pwrup.cr1 to USR:, will run only when powered-up later
2,pwrup.cr1,usr:

EXAMPLE 12.6-3. Format the USR: drive.

’Format the USR: drive
5,,usr:

EXAMPLE 12.6-4. Send OS on Power-up.

’Load this file into FLASH as the new OS
9,CR1000.Std.04.obj

EXAMPLE 12.6-5. Run Program from CRD: drive.

’Leave program on CRD:, run always, erase CRD: data files
13,toobigforcpu.cr1,crd:

EXAMPLE 12.6-6. Run Program Always, Erase CF data.

’Run always, erase CRD: data files
13,pwrup_1.cr1,crd

EXAMPLE 12.6-7. Run Program Now, Erase CF data.

’Copy run.cr1 to CPU:, erase CF data, run CPU:run.cr1, but not if later powered-up
14,run.cr1,cpu:

13-1

Section 13. Telecommunications and
Data Retrieval

Telecommunications, in the context of CR1000 operation, is the movement of
information between the CR1000 and another computing device, usually a PC.
The information can be programs, data, files, or control commands.

Telecommunications systems require three principal components: hardware,
carrier signal, and protocol. For example, a common way to communicate with
the CR1000 is with PC200W software by way of a PC COM port. In this
example, hardware are the PC COM port, the CR1000 RS-232 port, and a
serial cable. The carrier signal is PC RS-232, and the protocol is PakBus. Of
these three, a user most often must come to terms with only the hardware, since
the carrier signal and protocol are transparent in most applications.

Systems usually require a single type of hardware and carrier signal. Some
applications, however, require hybrid systems, which utilize two or more
hardware and signal carriers.

Contact a Campbell Scientific applications engineer for assistance in
configuring any telecommunications system.

13.1 Hardware and Carrier Signal
Campbell Scientific supplies or recommends a wide range of
telecommunications hardware. TABLE 13.1-1 lists telecommunications
destination device, path, and carrier options, which imply certain types of
hardware, for use with the CR1000 datalogger. Information in TABLE 13.1-1
is generic. For specific model numbers and specifications, contact a Campbell
Scientific applications engineer, or go to www.campbellsci.com.

TABLE 13.1-1. CR1000 Telecommunications Options

Destination
Device / Portal Communications Path Carrier Signal

PC / COM or USB Direct Connect RS-232
PDA / COM Port Direct Connect RS-232
PC / COM Port Digital Cellular 800 MHz RF
PC / COM Port Multidrop RS485
PC / Network Card Ethernet / PPP IP
PC / COM Port Spread Spectrum RF 900 MHz RF
PC / COM Port Licensed Frequency RF UHF VHF RF
PC / COM Port Short-haul Telephone CCITT v.24
PC / COM Port Land-line Telephone CCITT v.92
PDA / Infrared Port Infrared SIR
Satellite System Satellite Transceiver RF
CompactFlash Card Direct Connect SRAM
Audible Report Land-line Telephone Voice
Heads-Up Display Direct Connect CS I/O
Digital Display Direct Connect CS I/O
Keyboard / Display Direct Connect CS I/O

Section 13. Telecommunications and Data Retrieval

13-2

13.2 Protocols
The primary telecommunication protocol for the CR1000 is PakBus (Section
14 PakBus Overview). ModBus and DNP3 are also supported on board
(Section 15). CANBUS is also supported when using the Campbell Scientific
CANBUS communications module.

13.3 Initiating Telecommunications
Telecommunications sessions are usually initiated by the user or PC. Once
telecommunications is established, the CR1000 issues a series of commands to
send programs, set clocks, and collect data. Because data retrieval is managed
by the PC, several PC’s can have access to a single CR1000 without disrupting
the continuity of data. PakBus allows multiple PCs to communicate with the
CR1000 simultaneously when the proper telecommunications networks are
installed.

When using PC200W, PC400, and RTDAQ software, the user always initiates
telecommunications. With LoggerNet software, the user or LoggerNet, by way
of a scheduler, may initiate telecommunications. Some applications, however,
require the CR1000 to initiate a telecommunications session. This feature of
the CR1000 is known as Callback.

For example, if a fruit grower wants the CR1000 to contact him with a frost
alarm, the CR1000 can instigate telecommunications. Telecommunications is
often initiated by calling the PC, but can also be initiated through email / text
messaging to the grower’s cell phone, audible voice synthesized information
over telephone, or by calling a pager. Callback has been utilized in
applications including Ethernet, land-line telephone, digital cellular, and direct
connection. For more information on available Callback features, contact a
Campbell Scientific applications engineer or search for “Call-back”
information in CRBASIC Editor Help.

When using the ComME communications port with non-
PakBus protocols, incoming characters can be corrupted
by concurrent use of the CS I/O for SDC communication.
PakBus communication uses a low level protocol of a
pause / finish / ready sequence to stop incoming data while
SDC occurs.

Non-PakBus communication includes PPP protocol,
ModBus, DNP3, and generic CRBASIC driven use of CS
I/O.

Usually unnoticed, a short burst of SDC communication
occurs at power up and other times when the datalogger is
reset, such as when compiling a program or changing
settings that require recompiling. This SDC activity is the
datalogger querying the SDC to see if the CR1000KD
Keyboard / Display, an SDC device, is attached.

When DevConfig and PakBus Graph retrieve settings, the
CR1000 queries the SDC to determine what SDC devices
are connected. Results of the query can be seen in the
DevConfig and PakBus Graph settings tables. SDC
queries occur whether or not an SDC device is attached.

CAUTION

Section 13. Telecommunications and Data Retrieval

13-3

13.4 Data Retrieval
Data tables are transferred to PC files through a telecommunications link
(Section 13 Telecommunications and Data Retrieval) or by transporting the CF
card to the PC.

13.4.1 Via Telecommunications
Data are usually transferred through a telecommunications link to an ASCII
file on the supporting PC using Campbell Scientific datalogger support
software (Section 16 Support Software). See also the manual and Help for the
software package being used.

13.4.2 Via CF Card
When installing a CF card module, first turn off the CR1000
power.

Before removing a CF card module from the datalogger,
disable the card by pressing the “removal button” (NOT the
eject button), wait for the green LED, then turn the CR1000
power off.

Removing a card or card module from the CR1000 while
the CF card is active can cause garbled data and can
damage the card.

Sending a program to the CR1000 may erase all SRAM
and CF card data. To prevent losing data, collect data
from the CF card before sending a program to the
datalogger.

Data stored on CF cards are retrieved through a telecommunication link to the
CR1000 or by removing the card and carrying it to a computer. Many varieties
of CF adapters are available for computers and PCMCIA card slots. CF
adaptors are much faster than telecommunications links, so, with large CF files,
transferring data to a computer with an adaptor will be significantly faster.

The format of data files collected via a CF adaptor is different than the format
created by Campbell Scientific telecommunications software. Data files read
from the CF card via a CF adaptor can be converted to a Campbell Scientific
format using CardConvert. CardConvert is included with most CSI software.
Consult the software manual for more CardConvert information.

13.4.3 Data Format on Computer
CR1000 data stored on a PC via support software is formatted as either ASCII
or Binary depending on the file type selected in the support software. Consult
the software manual for details on the various available data file formats.

CAUTION

Section 13. Telecommunications and Data Retrieval

13-4

This is a blank page.

14-1

Section 14. PakBus Overview
Read more! This section is provided as a primer to PakBus
communications. Complete information is available in Campbell
Scientific’s “PakBus Networking Guide.”

The CR1000 communicates with computers or other dataloggers via PakBus.
PakBus is a proprietary telecommunications protocol similar in concept to IP
(Internet protocol). PakBus allows compatible Campbell Scientific dataloggers
and telecommunications hardware to seamlessly link to a PakBus network.

14.1 PakBus Addresses
CR1000s are assigned PakBus address 1 as a factory default. Networks with
more than a few stations should be organized with an addressing scheme that
guarantees unique addresses for all nodes. One approach, demonstrated in Fig.
1, is to assign single-digit addresses to the first tier of nodes, multiples of tens
to the second tier, multiples of 100s to the third, etc. Note that each node on a
branch starts with the same digit. Devices, such as PCs, with addresses greater
than 4000 are given special administrative access to the network

PakBus addresses are set using DevConfig, PakBusGraph, CR1000 status
table, or with a CR1000KD Keyboard Display. DevConfig (Device
Configuration Utility) is the primary settings editor for Campbell Scientific
equipment. It requires a hardwire RS-232 connection to a PC and allows
backup of settings on the PC hard drive. PakBusGraph is used over a
telecommunications link to change settings, but has no provision for backup.

Caution. Care should be taken when changing PakBus addresses with PakBus
Graph or in the status table. If an address is changed to an unknown value, a
field visit with a laptop and DevConfig may be required to discover the
unknown address.

14.2 Nodes: Leaf Nodes and Routers
• A PakBus network consists of 2 to 4093 linked nodes.

• One or more leaf nodes and routers can exist in a network.

• Leaf nodes are measurement devices at the end of a branch of the PakBus
web.

o Leaf nodes can be linked to any router.

o A leaf node cannot route packets but can originate or receive them.

• Routers are measurement or telecommunications devices that route
packets to other linked routers or leaf nodes.

o Routers can be branch routers. Branch routers only know as
neighbors central routers, routers in route to central routers, and
routers one level outward in the network.

Section 14. PakBus Overview

14-2

o Routers can be central routers. Central routers know the entire
network. A PC running LoggerNet is typically a central router.

o Routers can be router-capable dataloggers or communications devices.

The CR1000 is a leaf node by factory default. It can be configured as a router
by setting “IsRouter” in its status table to “1” or “True”. The network shown
in FIGURE 14.2-1 contains 6 routers and 8 leaf nodes.

FIGURE 14.2-1. PakBus Network Addressing. PakBus addresses are
shown in parentheses after each datalogger in the network.

LoggerNet is configured by default as a router and can route datalogger to
datalogger communications.

14.3 Router and Leaf Node Configuration
TABLE 14.3-1 lists leaf node and router hardware.

TABLE 14.3-1. PakBus Leaf Node and Router Devices

Network
Device Description

PakBus
Leaf Node

PakBus
Router

PakBus
Aware Transparent

CR200 Datalogger •
CR800 Datalogger • •
CR1000 Datalogger • •
CR3000 Datalogger • •
CR5000 Datalogger • •
LoggerNet Software •
NL100 Network Link • •
NL115 Network Link •
MD485 Multidrop • •
RF401 Radio • • •
CC640 Camera •
SC105 Serial Interface •
SC32B Serial Interface •
SC932A Serial Interface •
COM220 Telephone Modem •
COM310 Telephone Modem •
SRM-5A Short-haul Modem •

Section 14. PakBus Overview

14-3

14.4 Linking Nodes: Neighbor Discovery
To form a network, nodes must establish links with neighbors (adjacent nodes).
Links are established through a process called discovery. Discovery occurs
when nodes exchange hellos. A hello exchange occurs during a hello-message
between two nodes.

14.4.1 Hello-message (two-way exchange)
A hello-message is an interchange between two nodes that negotiates a
neighbor link. A hello-message is sent out in response to one or both of either
a beacon or a hello-request.

14.4.2 Beacon (one-way broadcast)
A beacon is a broadcast sent by a node at a specified interval telling all nodes
within hearing that a hello-message can be sent. If a node wishes to establish
itself as a neighbor to the beaconing node, it will then send a hello-message to
the beaconing node. Nodes already established as neighbors will not respond
to a beacon.

14.4.3 Hello-request (one-way broadcast)
All nodes hearing a hello-request broadcast (existing and potential neighbors)
will issue a hello-message to negotiate or re-negotiate a neighbor relationship
with the broadcasting node.

14.4.4 Neighbor Lists
PakBus devices in a network can be configured with a neighbor list. The
CR1000 sends out a hello-message to each node in the list whose verify
interval has expired at a random interval*. If a node responds, a hello-message
is exchanged and the node becomes a neighbor.

*A random number of seconds between INTERVAL and (2 * INTERVAL), where
INTERVAL is the Verify Interval setting if non-zero, or 30 seconds if the Verify
Interval setting is zero.

Neighbor filters dictate which nodes are neighbors and force packets to take
routes specified by the network administrator. LoggerNet (a PakBus node)
derives its neighbor filter from link information in the Setup device map.

14.4.5 Adjusting Links
PakBusGraph, a client of LoggerNet, is particularly useful when testing and
adjusting PakBus routes.

Paths established by way of beaconing may be redundant and vary in
reliability. Redundant paths can provide backup links in the event the primary
path fails. Redundant and unreliable paths can be eliminated by activating
neighbor filters in the various nodes and by disabling some beacons.

Section 14. PakBus Overview

14-4

14.4.6 Maintaining Links
Links are maintained by means of the CVI (communications verification
interval). The CVI can be specified in each node with DevConfig. The
following rules* apply:

If Verify Interval = 0, then CVI = 2.5 x beacon interval*

If Verify Interval = 60, then CVI = 60 seconds*

If Beacon Interval = 0 and Verify Interval = 0, then CVI = 300 seconds*

*During the hello-message, a CVI must be negotiated between two neighbors.
The negotiated CVI will be the lesser of the first nodes CVI and 6/5ths of the
neighbors CVI.

If the CR1000 does not hear from a neighbor for one CVI, it begins again to
send a Hello message to that node at the random interval.

Users should base verification intervals on the timing of normal
communications such as scheduled LoggerNet collections or datalogger to
dataloggers communications. The idea is to not allow the verification interval
to expire before normal communications. If the verification interval expires
the devices will initiate hello exchanges in an attempt to regain neighbor status,
increasing traffic in the network.

14.5 Troubleshooting
Various tools and methods have been developed to assist in troubleshooting
PakBus networks.

14.5.1 Link Integrity
With beaconing or neighbor filter discovery, links are established and verified
using relatively small data packets (Hello messages). When links are used for
regular telecommunications, however, longer messages are used.
Consequently, a link may be reliable enough for discovery but unreliable with
larger packets. This condition is most common in radio networks.

PakBus communications over marginal links can often be improved by
reducing the size of the PakBus packets. Best results are obtained when the
maximum packet sizes in both nodes are reduced.

Automatic Packet Size Adjustment

The BMP5 file receive transaction allows the BMP5 client (LoggerNet) to
specify the size of the next fragment of the file that the CR1000 sends.

The file receive transaction is used to get table definitions from
the datalogger.

Because LoggerNet must specify a size for the next fragment of the file, it uses
whatever size restrictions that apply to the link.

NOTE

Section 14. PakBus Overview

14-5

Hence, the size of the responses to the file receive commands that the CR1000
sends will be governed by the maxPacketSize setting for the datalogger as well
as that of any of its parents in LoggerNet's network map. Note that this
calculation also takes into account the error rate for devices in the link.

BMP5 data collection transaction does not provide any way for the client to
specify a cap on the size of the response message. This is the main reason why
the "Max Packet Size" setting exists in the CR1000. The CR1000 can look at
this setting at the point where it is forming a response message and cut short
the amount of data that it would normally send if the setting limits the message
size.

14.5.2 Ping
Link integrity can be verified with the following procedure by using
PakBusGraph | Ping Node. Nodes can be pinged with packets of 50, 100, 200
or 500 bytes.

Do not use packet sizes greater than 90 when pinging with
RF400-series radios or CR200-series dataloggers.

Pinging with ten repetitions of each packet size will characterize the link.
Before pinging, all other network traffic (scheduled data collections, clock
checks, etc.) should be temporarily disabled. Begin by pinging the first layer
of links (neighbors) from the PC, then proceed to nodes that are more than one
hop away. TABLE 14.5-1 provides a link performance gage.

TABLE 14.5-1. PakBus Link Performance Gage

500 byte
Ping Sent

Successes

Link Status

10 10 excellent
10 9 good
10 7-8 adequate
10 <7 marginal

14.5.3 Traffic Flow
Keep beacon intervals as long as possible with higher traffic (large numbers of
nodes and / or frequent data collection). Long beacon intervals minimize
collisions with other packets and resulting retries. The minimum
recommended beacon interval is 60 seconds. If communications traffic is high,
consider setting beacon intervals of several minutes. If data throughput needs
are great, maximize data bandwidth by creating some branch routers, and / or
by eliminating beacons altogether and setting up neighbor filters.

NOTE

Section 14. PakBus Overview

14-6

14.6 LoggerNet Device Map Configuration
As shown in FIGURE 14.6-1 and FIGURE 14.6-2, the essential element of a
PakBus network device map in LoggerNet is the PakBusPort. After adding the
root port (COM, IP, etc), add a PakBusPort and the dataloggers.

FIGURE 14.6-1. Flat Map

FIGURE 14.6-2. Tree Map

Use the ‘tree’ configuration of FIGURE 14.6-2 when communications requires
routers. The shape of the map serves to disallow a direct LoggerNet
connection to CR1000_2 and CR1000_3, and implies constrained routes that
will probably be established by user-installed neighbor filters in the routers.
This assumes that LoggerNet beacons are turned off. Otherwise, with a default
address of 4094, LoggerNet beacons will penetrate the neighbor filter of any
in-range node.

15-1

Section 15. Alternate Telecoms
Resource Library

15.1 DNP3
The CR1000 is DNP3 SCADA compatible. DNP3 is a SCADA protocol used
primarily by utilities, power generation and distribution networks, and the
water and wastewater treatment industry.

Distributed Network Protocol (DNP) is an open protocol used in applications
to ensure data integrity using minimal data bandwidth. DNP implementation in
the CR1000 is DNP3 level 2 Slave compliant with some of the operations
found in a level 3 implementation. A standard datalogger program with DNP
instructions will take arrays of real time or processed data and map them to
DNP arrays in integer or binary format. The CR1000 can then respond to any
DNP master with the requested data or send unsolicited responses to a specific
DNP master. DNP communications are supported in the CR1000 through the
RS-232 port, COM1 - COM4, or over TCP, taking advantage of multiple
communications options compatible with the CR1000, e.g., RF, cellular phone,
satellite.

Using SCADA software that speaks DNP enables data from the CR1000 to
move directly into a database or display screens. Application include
monitoring the weather near power transmission lines to enhance operation
decisions, monitoring and controlling irrigation from a wastewater treatment
plant, controlling a remote pump, measuring river flow, or monitoring air
movement and quality for a power plant.

Program code in EXAMPLE 15.1-1 takes Iarray() analog data and Barray()
binary data (status of control port 5) and maps them to DNP arrays. The
datalogger can then respond to a DNP master with the specified data or send
unsolicited responses to DNP Master 3.

EXAMPLE 15.1-1. CRBASIC Code. Implementation of DNP3.

'CR1000

Public IArray(4) as Long
Public BArray(1) as Boolean

Public WindSpd
Public WindDir
Public Batt_Volt
Public PTemp_C

Units WindSpd=meter/Sec
Units WindDir=Degrees
Units Batt_Volt=Volts
Units PTemp_C=Deg C

Section 15. Alternate Telecoms Resource Library

15-2

'Main Program
BeginProg

 'DNP communication over the RS-232 port at 115.2kbps. Datalogger DNP address is 1
 DNP(COMRS-232,115200,1)

 'DNPVariable (array,swath,object,variation,class,flag,eventExpression,numberofEvents)
 DNPVariable (IArray,4,30,2,0,&B00000000,0,0)
 DNPVariable (IArray,4,32,2,3,&B00000000,0,10)
 DNPVariable (BArray,1,1,1,0,&B00000000,0,0)
 DNPVariable (Barray,1,2,1,1,&B00000000,0,1)

 Scan(1,Sec,1,0)

 'Wind Speed & Direction Sensor measurements WS_ms and WindDir:
 PulseCount(WindSpd,1,1,1,3000,2,0)
 IArray(1) = WindSpd * 100
 BrHalf(WindDir,1,mV2500,3,1,1,2500,True,0,_60Hz,355,0)
 If WindDir>=360 Then WindDir=0
 IArray(2) = WindDir * 100
 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)
 IArray(3) = Batt_Volt * 100
 'Wiring Panel Temperature measurement PTemp_C:
 PanelTemp(PTemp_C,_60Hz)
 IArray(1) =PTemp_C
 PortGet (Barray(1),5)

 'Update DNP arrays and send unsolicited requests to DNP Master address 3
 DNPUpdate(3)
 NextScan
EndProg

15.2 Modbus
15.2.1 Overview

Modbus is a communication protocol that allows instrumentation and sensors
to exchange information and data. Modbus enables RTUs (Remote Terminal
Units) to send and receive data from other RTUs, computers, and Modbus
sensors. Modbus has become a widely used standard in most SCADA (HMI)
software, RTUs, PLCs, and some sensors. CR1000 dataloggers communicate
via Modbus over RS-232, RS485 and TCP.

Typical Modbus SCADA systems consist of a PC based SCADA master, RTU
and PLC slaves, field instruments or sensors, and the communications network
hardware. The communications port, baud rate, data bits, stop bits, and parity
are set in the Modbus driver of the master and / or the slaves. Modbus has two
communications modes, RTU and ASCII. Campbell Scientific dataloggers
communicate in RTU mode exclusively.

Modbus sensors can be queried by the CR1000. Because Modbus has a set
command structure, it is easier to get data from Modbus sensors than from

Section 15. Alternate Telecoms Resource Library

15-3

serial sensors. Because Modbus uses a common bus and addresses each node,
serial sensors are essentially multiplexed to a CR1000 datalogger.

By default, a CSI datalogger goes into sleep mode after 40 seconds of
communications inactivity. Once asleep, two packets are required before the
datalogger will respond. The first packet wakes the logger up and the second
packet is received as data. Dataloggers can be set to keep communications
ports open and awake, but at higher power usage.

15.2.2 Terminology
TABLE 15.2-1 lists terminology equivalents to aid in understanding how
Campbell Scientific dataloggers fit into a SCADA system.

TABLE 15.2-1. Modbus to Campbell Scientific Equivalents

Modbus Domain Data Form Campbell Scientific Domain

Coils Single Bit Ports, Flags, Boolean Variables

Digital Registers 16-bit Word Floating Point Variables

Input Registers 16-bit Word Floating Point Variables

Holding Registers 16-bit Word Floating Point Variables

RTU / PLC Datalogger

Master Usually a computer

Slave Usually a datalogger

Field Instrument Sensor

15.2.2.1 Glossary of Terms
Coils (00001 to 09999)

Originally, “coils” referred to relay coils. In CSI dataloggers, coils are
exclusively ports, flags, or a Boolean variable array. Ports are inferred if
parameter 5 of the ModbusSlave instruction is set to 0. Coils are assigned
to Modbus registers 00001 to 09999.

Digital Registers 10001-19999
Hold values resulting from a digital measurement. Digital registers in the
Modbus domain are read only. In the CSI domain, the leading digit in
Modbus digital, input and holding registers is ignored, and so digital,
input, and holding registers are assigned together to a single variable
array. Thus, in the CSI domain, digital registers are declared as Dim or
Public variables and are read / write.

Input Registers 30001 - 39999
Hold values resulting from an analog measurement. Input registers in the
Modbus domain are read only. In the CSI domain, the leading digit in
Modbus digital, input and holding registers is ignored, and so digital,
input, and holding registers are assigned together to a single variable
array. Thus, in the CSI domain, input registers are declared as Dim or
Public variables and are read / write.

Section 15. Alternate Telecoms Resource Library

15-4

Holding Registers 40001 - 49999
Hold values resulting from a programming action. Holding registers in
the Modbus domain are read / write. In the CSI domain, the leading digit
in Modbus digital, input and holding registers is ignored, and so digital,
input, and holding registers are assigned together to a single variable
array. Thus, in the CSI domain, holding registers are declared as Dim or
Public variables and are read / write.

RTU / PLC
Remote Telemetry Units (RTUs) and Programmable Logic Controllers
(PLCs) were at one time used in exclusive applications. As technology
increases, however, the distinction between RTUs and PLCs becomes
more blurred. A CR1000 fits both RTU and PLC definitions.

15.2.3 CR1000 Programming for Modbus
15.2.3.1 Declarations

TABLE 15.2-2 shows the linkage between CR1000 ports, flags and Boolean
variables and Modbus registers. Modbus does not distinguish between
datalogger ports, flags, or Boolean variables. By declaring only ports, or flags,
or Boolean variables, the declared feature is addressed by default. A typical
CRBASIC program for a Modbus application will declare variables and ports,
or variables and flags, or variables and Boolean variables.

TABLE 15.2-2. Linkage between CR1000 Ports, Flags,
and Variables and Modbus Registers.

CR1000 Feature

Example CRBASIC
Declaration

Equivalent Example
Modbus Register

Control Port (Port) Public Port(8) 00001 to 00009

Flag Public Flag(17) 00001 to 00018

Boolean Variable Public ArrayB(56) as Boolean 00001 to 00057

Variable Public ArrayV(20)* 40001 to 40041* or
30001 to 30041*

*Because of byte number differences, each CR1000 domain variable translates
to two Modbus domain input / holding registers.

15.2.3.2 Datalogger Commands
Complete descriptions and options of commands are available in CRBASIC
Editor Help.

ModbusMaster
Sets up a datalogger as a Modbus master to send or retrieve data from a
Modbus slave.

Syntax
ModbusMaster (ResultCode, ComPort, BaudRate, ModbusAddr,
Function, Variable, Start, Length, Tries, TimeOut)

Section 15. Alternate Telecoms Resource Library

15-5

ModbusSlave
Sets up a datalogger as a Modbus slave device.

Syntax
ModbusSlave (ComPort, BaudRate, ModbusAddr, DataVariable,
BooleanVariable)

MoveBytes
Moves binary bytes of data into a different memory location when translating
big endian to little endian data.

Syntax
MoveBytes | Dest | DestOffset | Source | SourceOffset | NumBytes

15.2.3.3 Addressing (ModbusAddr)
Modbus devices have a unique address in each network. Addresses range from
1 to 247. Address 0 is reserved for universal broadcasts. When using the
NL100, the Modbus address and the Pakbus address may need to be the same.

15.2.3.4 Supported Function Codes (Function)
Modbus protocol has many function codes. CSI datalogger commands support
the following.

01 Read Coil Status
02 Read Input Status
03 Read Holding Registers
04 Read Input Registers
05 Force Single Coil
15 Force Multiple Coils
16 Force Multiple Registers

15.2.3.5 Reading Inverse Format Registers (MoveBytes)
Some Modbus devices require reverse byte order words (CDAB vs. ABCD).
This can be true for either floating point, or integer formats. Since a slave
datalogger uses the ABCD format, either the master has to make an adjustment,
which is sometimes possible, or the datalogger needs to output reverse byte
order words. To reverse the byte order in the datalogger, use the MoveBytes
instruction as shown in the sample code below.

for i = 1 to k
 MoveBytes(InverseFloat(i),2,Float(i),0,2)
 MoveBytes(InverseFloat(i),0,Float(i),2,2)
next

In the example above InverseFloat(i) is the array holding the inverse byte
ordered word (CDAB). Array Float(i) holds the obverse byte ordered word
(ABCD).

Section 15. Alternate Telecoms Resource Library

15-6

15.2.4 Troubleshooting
Test the Modbus functions on the datalogger with third party software Modbus
software. Further information is available at the following links:

http://ecatalog.campbellsci.com/kbase/knowbase.cfm
http://www.simplyModbus.ca/FAQ.htm
http://www.Modbus.org/tech.php
http://www.lammertbies.nl/comm/info/Modbus.html
http://www.telemecanique.com/85256D9800508A3B/all/

852566B70073220C85256752006EA537?OpenDocument&L=EN

15.2.5 Modbus over IP with NL115
The NL115 supports networking of Modbus devices. When the
ModbusSlave() instruction's com port is set to 502, the datalogger will listen on
this port over TCP/IP for commands from a TCP Modbus Master device. If the
ModbusMaster() instruction's comport is a variable that is set by a TCPOpen()
function, the datalogger will use the TCP socket opened by TCPOpen() to
communicate via Modbus TCP/IP to a slave.

15.2.6 Modbus Slave over IP with NL100
The NL100 can be used to support simultaneous networking of Modbus
devices and PakBus devices (e.g. another CR1000 or LoggerNet). This feature
allows for simultaneous real-time data viewing and collection of data. Correct
operating systems (OS) for the CR1000 and NL100, as well as the correct
settings are critical for success. The datalogger OS should be version 9, or
later, and the NL100 OS should be version rev7fix1 (nl100-r7fix1.os), or later.
The CR1000 must be configured to respond to Modbus queries. Protocol used
with the NL100 is Modbus / TCP, which enables communication options not
available with serial connections (RS-232, RS485). When ModbusSlave()
comport is set to 0, the CR1000 will listen for TCP / Modbus commands.

15.2.6.1 Configuring the NL100
Connect to the NL100 with Device Configurator (DevConfig) software.
DevConfig allows viewing and changing of device settings. Alternatively,
settings can be set by sending the file “NL100-Modbus-Setup.xml” with
DevConfig. Some settings, such as the IP address and PakBus address, are
unique to each application. Figures 19.2-1 through 19.2-6 depict DevConfig
windows and settings to be set and verified to enable Modbus communication.
FIGURE 15.2-1 through FIGURE 15.2-6 show settings for the NL100.

Section 15. Alternate Telecoms Resource Library

15-7

FIGURE 15.2-1. NL100/NL105 Settings.
Verify the correct OS version and enter IP address, net mask, and default gateway.

FIGURE 15.2-2. PakBus Settings. The PakBus address must be unique to the network. PakBus / TCP
Server must be enabled. Pick a PakBus / TCP Server port number or use the default. PakBus / TCP

Client should be disabled. Modbus / TCP - PakBus Gateway should be enabled.

Section 15. Alternate Telecoms Resource Library

15-8

FIGURE 15.2-3. RS-485 Settings.
This port should be disabled, unless an RS485 connection is being used.

FIGURE 15.2-4. RS-232 Settings.
This port should be set to Configuration Monitor.

Section 15. Alternate Telecoms Resource Library

15-9

FIGURE 15.2-5. CS I/O Settings. The CS I/O Configuration should be set to PakBus. The SDC
Address/Me Baud Rate should be set to SDC7 or SDC8. The Serial Server Port will not be active.

PakBus Beacon Interval will probably be ok at 60 sec. As a result the PakBus verify Interval will be 0.

FIGURE 15.2-6. Tlink Settings.
This option is disabled.

Section 15. Alternate Telecoms Resource Library

15-10

15.2.6.2 Configuring the CR1000
The CRBASIC program has to include the instruction ModbusSlave, which
defines what variables are accessible and the Modbus address of the devise.
The ModbusSlave instruction does not need to be executed every time the
program runs but it must at least be placed between the 'Begin Program' and
'Scan' instructions (see program example below). The Modbus address and the
datalogger PakBus address must be identical. ComPort must be set for PakBus
or 0 as the option code. EXAMPLE 15.2-1 lists example CR1000 Modbus
slave code.

EXAMPLE 15.2-1. CRBASIC Code Example: Modbus Slave

'Program for CR1000 Series Datalogger
'Declare Public Variables

preservevariables
Public PTempC, PTempF, Batt_Volts
Public Modbus(5)
Public modbdig(5) as Boolean

'Define Data Tables

DataTable (ModTest,1,-1)
DataInterval (0,1,Min,10)
Minimum (1,Batt_Volts,FP2,0,False)
Sample (1,PTempC,FP2)
sample (1,PTempF,FP2)
EndTable

'Main Program Array that holds
BeginProg

ModbusSlave (0,-115200,1,Modbus(),modbdig())
‘parameter 1 must be 0 for NL100 & 502 for NL115
‘parameter 3 matches the datalogger PakBus address -- recommended
‘parameter 4 Modbus registers array
‘parameter 5 Modbus coils array, if = 0 uses DL C1-C8

Scan (1,Sec,0,0)

PanelTemp (PTempC,250)
PTempF = PTempC * 1.8 + 32
Battery (Batt_Volts)

Modbus(1) = Batt_Volts
Modbus(2) = PTempC
Modbus(3) = PtempF

CallTable ModTest

NextScan

EndProg

16-1

Section 16. Support Software
PC / Windows(R) compatible software products are available from Campbell
Scientific to facilitate CR1000 programming, maintenance, data retrieval, and
data presentation. Short Cut, PC200W, and Visual Weather are designed for
novice integrators, but have features useful in advanced applications. PC400
and LoggerNet provide increasing levels of power required for advanced
integration, programming and networking applications. Support software for
PDA and Linux applications are also available.

16.1 Short Cut
Short Cut utilizes an intuitive user interface to create CR1000 program code for
common measurement applications. It presents lists from which sensors,
engineering units, and data output formats are selected. It supports by name
most sensors sold by Campbell Scientific. It features “generic” measurement
routines, enabling it to support many sensors from other manufacturers.
Programs created by Short Cut are automatically well documented and produce
examples of CRBASIC programming that can be used as source or reference
code for more complex programs edited with CRBASIC Editor.

Short Cut is included with PC200W, Visual Weather, PC400, RTDAQ, and
LoggerNet and is available at no charge from the Campbell Scientific web site.

16.2 PC200W
PC200W utilizes an intuitive user interface to support direct serial
communication to the CR1000 via COM / RS-232 ports. It sends programs,
collects data, and facilitates monitoring of digital measurement and process
values. PC200W is available at no charge from the Campbell Scientific web
site.

16.3 Visual Weather
Visual Weather supports weather stations. It is recommended in applications
wherein the user requires minimal control over programming and the pre-
configured display and reporting features. Visual Weather is highly integrated
and easy to use.

16.4 PC400
PC400 is a mid-level software suite. It includes CRBASIC Editor, point-to-
point communications over several communications protocols, simple real-time
digital and graphical monitors, and report generation. It does not support
scheduled collection or multi-mode communication networks.

16.5 LoggerNet Suite
The LoggerNet suite utilizes a client-server architecture that facilitates a wide
range of applications and enables tailoring software acquisition to specific
requirements. TABLE 16.5-1 lists features of LoggerNet products that include

Section 16. Support Software

16-2

the LoggerNet server. TABLE 16.5-2 lists features of LoggerNet products that
require the LoggerNet server as an additional purchase.

TABLE 16.5-1. LoggerNet Products that Include the LoggerNet Server

LoggerNet Datalogger management, programming, data
collection, scheduled data collection, network
monitoring and troubleshooting, graphical data
displays, automated tasks, data viewing and
post-processing.

LoggerNet Admin All LoggerNet features plus network security,
manages the server from a remote PC, runs
LoggerNet as a service, exports data to third
party applications, launches multiple instances
of the same client, e.g., two or more
functioning Connect windows.

LoggerNet Remote Allows management of an existing LoggerNet
datalogger network from a remote location,
without investing in another complete copy of
LoggerNet Admin.

LoggerNet-SDK Allows software developers to create custom
client applications that communicate through a
LoggerNet server with any datalogger
supported by LoggerNet. Requires LoggerNet.

LoggerNet Server - SDK Allows software developers to create custom
client applications that communicate through a
LoggerNet server with any datalogger
supported by LoggerNet. Includes the
complete LoggerNet Server DLL, which can be
distributed with the custom client applications.

LoggerNet Linux Includes LoggerNet Server for use in a Linux
environments and LoggerNet Remote for
managing the server from a Windows
environment.

TABLE 16.5-2. LoggerNet Clients
(require, but do not include, the LoggerNet Server)

Baler Handles data for third-party application feeds.

RTMCRT RTMC viewer only.

RTMC Web Server Converts RTMC graphics to HTML.

RTMC Pro Enhanced version of RTMC.

LoggerNetData Displays / Processes real-time and historical data.

CSI OPC Server Feeds data into third-party OPC applications.

Section 16. Support Software

16-3

16.6 PDA Software
PConnect Software supports PDAs with Palm Operating Systems.
PConnectCE supports Windows Mobile and Pocket PC PDAs. Both support
direct RS-232 connection to the CR1000 for sending programs, collecting data,
and digital real-time monitoring.

Section 16. Support Software

16-4

This is a blank page.

17-1

Section 17. CR1000KD: Using the
Keyboard Display

Read more! See Section 11.6 CR1000KD Custom Menus.

The CR1000 has an optional keyboard display, the CR1000KD. This section
illustrates the use of the CR1000KD using its default menus. The CR1000KD
has a few keys that have special functions which are listed below.

Key Usage

[2] and [8] To navigate up and down through the menu list one line at a time

[Enter] Selects the line or toggles the option of the line the cursor is on

[Esc] Back up one level in the menu

[Home] Move cursor to top of the list

[End] Move cursor to bottom of the list

[Pg Up] Move cursor up one screen

[Pg Dn] Move cursor down one screen

[BkSpc] Delete character to the left

[Shift] Change alpha character selected

[Num Lock] Change to numeric entry

[Del] Delete

[Ins] Insert/change graph setup

[Graph] Graph

Section 17. CR1000KD: Using the Keyboard Display

17-2

CR1000 Display

 CAMPBELL
SCIENTIFIC

CR1000 Datalogger

06/18/2000, 18:24:35
CPU: TRIG.CR1

Running.

Real Time Tables
Real Time Custom
Final Storage Data
Reset Data Tables
Graph Setup

Active Tables
Format Card

PCCard is only in the menu if a CF
card module is attached, and it has
a card in it.

Data
Run/Stop Program
File
PCCard
Ports and Status
Configure, Settings

Port
Status Table

New
Edit
Copy
Delete
Run Options
Directory
Format

Power Up Screen

Press any key
for Main Menu
(except , , ,
or Esc)

Toggle backlight with
Adjust contrast with

 lighter darker

Set Time/Date
Settings
Display

Options depend on
program state

Section 17. CR1000KD: Using the Keyboard Display

17-3

17.1 Data Display

Data
Run/Stop Program
File
PCCard
Ports and Status
Configure, Settings

List of Data Tables created by
active program

List of User-Selected Variables
(blank if not set up)

Real Time Tables
Real Time Custom
Final Storage Data
Reset Data Tables
Graph Setup

Graph Type Roll
Scaler Manual
Upper: 0.000000
Lower: 0.000000
Display Val On
Display Max On
Display Min On

List of Data Tables created by
active program

Move the cursor
to Data and
press Enter

All Tables
List of Data Tables created by
active program

}
Roll/Scope
Manual/Auto

Not shown if “Auto”

On/Off
On/Off
On/Off

Scope requires manual scalar

Section 17. CR1000KD: Using the Keyboard Display

17-4

17.1.1 Real Time Tables

Public
Table1
Temps

Tref : 23.0234
TCTemp(1) : 19.6243
TCTemp(2) : 19.3429
TCTemp(3) : 21.2003
Flag(1) : -1.0000
Flag(2) : 0.00000
Flag(3) : 0.00000
Flag(4) : 0.00000

Scaler Manual
Upper: 30.000000
Lower: 20.000000
Display Val On
Display Max On
Display Min On
Graph Type Roll

30.0 22.35

 ___ ____
 __
20.00

List of Data Tables created by
active program. For Example,

Move the cursor to
desired table and
press Enter

TCTemp(3) :

Public Table values
can be changed.
Move the cursor to
value and press
Enter to edit value.

Press Graph for
graph of selected
field

Press Ins for
Graph Setup

New values are displayed as they
are stored.

Edit field: Num
 TCTemp(3)
 Current Value:
 21.2003
 New Value:
 �

Auto/Manual

On/Off
On/Off
On/Off
Roll/Scope

Move the cursor to setting
and press Enter to change

Section 17. CR1000KD: Using the Keyboard Display

17-5

17.1.2 Real Time Custom
The CR1000KD can be configured with a user defined real-time display. The
CR1000 will keep the setup as long as the same program is running, or it is
changed by the user.

Read more! Custom menus can also be programmed. See Section 11.6
CR1000KD Custom Menus for more information.

Public
Table1
Temps

Tref
TCTemp(1)
TCTemp(2)
TCTemp(3)
Flag(1)
Flag(2)
Flag(3)
Flag(4)

TCTemp(3) : 24.9496

 :
 :
 :
 :
 :
 :

List of Data Tables created by
active program. For Example,

Move the cursor to
desired table and
press Enter

TCTemp(3)

New values are displayed as they
are stored.

To delete a field, move the cursor to
that field and press Del

Move the cursor to
desired field and
press Enter

 :

To add value, move the cursor to
position for the value and press
Enter

List of User-
Selected Variables

Position cursor and
press Enter

Section 17. CR1000KD: Using the Keyboard Display

17-6

17.1.3 Final Storage Tables

TimeStamp Record Tref TC(1) TC(2) TC(3)
"2000-01-03 00:12:38" 0 21.934 22.8419
"2000-01-03 00:12:39" 1 24.1242 21.8619 21.9173 22.8364
"2000-01-03 00:12:40" 2 24.1242 21.8786 21.9229 22.8364
"2000-01-03 00:12:41" 3 24.1242 : 21.8786 21.9173 22.8419
"2000-01-03 00:12:42" 4 24.1242 : 21.8786 21.9173 22.8253
"2000-01-03 00:12:43" 5 24.1242 : 21.8675 21.9118 22.8364
"2000-01-03 00:12:44" 6 24.1242 : 21.8675 21.9173 22.8087
"2000-01-03 00:12:45" 7 24.1242 : 21.8675 21.9173 22.8142
"2000-01-03 00:12:46" 8 24.1242 : 21.8398 21.9395 22.8253
"2000-01-03 00:12:47" 9 24.1242 21.8176 21.9118 22.8308
"2000-01-03 00:12:48" 10 24.1242 21.8342 21.945 22.8364
"2000-01-03 00:12:49" 11 24.1242 21.8453 21.9506 22.8364

Press Ins for Jump To screen.

Press Graph for graph of
selected field or for full
screen display of string
data. Use ←, →, PgUp,
PgDn to move cursor
and window of data
graphed.

5 :2000-01-03 00:12:43
Tref TC(1)

21.8675

List of Data Tables created by
active program. For Example:

Table1
Temps

Move the cursor to
desired Table and
press Enter

Use Home (oldest), End (newest),
PgUp (older), PgDn (newer),
←, →, ↑, and ↓ to move around in
data table.

Scaler Manual
Upper: 30.000000
Lower: 20.000000
Display Val On
Display Max On
Display Min On
Graph Type Roll

30.0 21.87

 ______ _______
 ____ ___ ____
 __
20.00

Press Ins for
Graph Setup

 Go to Record:

 press Ins to edit

 Table Size:
 1000
 Current Record:
 759

 5 ∧
∨

Use arrow up
or down to
scroll to the
record number
wanted, or
press Ins and
manually type
in the record
number.

Section 17. CR1000KD: Using the Keyboard Display

17-7

17.2 Run/Stop Program

CPU: ProgramName.CR1
Is Running
>* Run on Power Up
 Stop, Retain Data
 Stop, Delete Data
 Restart, Retain Data
 Restart, Delete Data
Execute

CPU: ProgramName.CR1
Is Stopped
>* Run on Power Up
 Stop, Delete Data
 Restart, Retain Data
 Restart, Delete Data
Execute

CPU:
CRD:
or list of program
files on CPU if no
card is present

Data
Run/Stop Program
File
PCCard
Ports and Status
Configure, Settings

Press escape to cancel or get list of
available programs.

Press escape to cancel or get list of
available programs.

Press escape to cancel.

} Select 1 (press Enter)
and move the cursor
to Execute. Press
Enter to execute.

}
Select 1 (press Enter)
and move the cursor
to Execute. Press
Enter to execute.

Select location of
program file.

If program
is running

If program
is stopped

No program
running or
stopped

Move the cursor
to run/stop program
and press Enter.

Section 17. CR1000KD: Using the Keyboard Display

17-8

17.3 File Display

Data
Run/Stop Program
File
PCCard
Ports and Status
Configure, Settings

New File Name:
CPU: .CR1
CRD: .CR1

CPU:
CRD: New

Edit
Copy
Delete
Run Options
Directory
Format

Copy
 From

 To

 Execute

Move the cursor
to File and
press Enter

List of files on
CPU or Card.

Section 17. CR1000KD: Using the Keyboard Display

17-9

17.3.1 File: Edit
The CRBASIC Editor is recommended for writing and editing datalogger
programs. Changes in the field can be made with the keyboard display.

Press Ins

ESC

CPU:
 TCTEMP.CR1 0
 RACE.CR1 0

CR1000
' TCTemp.CR1

Public TREF,TC(3),FLAG(8)

D ataTable (Temps,1,1000)
 Sample (1,TREF,IEEE4)
 Sample (3,TC(),IEEE4)
E dT bl

ENTER
 Edit Instruction
 Blank Line
 Create Block

List of Program files on CPU: or
CRD: For Example:

Move the cursor to desired
Program and press Enter

Edit Directly or move cursor
to first character of line and
press Enter

D

INSERT
 Instruction
 Function
 Blank Line
 Block
 Insert Off

DataTable
 TableName
 > Temps
 TrigVar
 1
 Size
 1000

Block Commands
 Copy
 Cut
 Delete

Insert blank line

DataTable (Temps,1,1000)
 Sample (1,TREF,IEEE4)
 Sample (3,TC(),IEEE4)
EndTable

BeginProg
 Scan(1,sec,3,0)

Edit Instruction parameters with
parameter names and some pick lists:

DataTable (Temps,1,1000) Move the cursor
to highlight
desired block and
press Enter

To insert a block created by this
operation, move the cursor to
desired place in program and press
Ins.

Save Changes?
 Yes
 No

Section 17. CR1000KD: Using the Keyboard Display

17-10

17.4 PCCard Display

Data
Run/Stop Program
File
PCCard
Ports and Status
Configure, Settings

All Card Data
Will be Lost!

Proceed?
Yes
No

Active Tables
Format Card

List of Data Tables on card
used by active program

Move the cursor
to PCCard and
press Enter

PCCard is only in menu if
a CF card module is
attached and a CF card is
inserted.

Section 17. CR1000KD: Using the Keyboard Display

17-11

17.5 Ports and Status

Read more! See Appendix A Status Table

List of Status Variables
(see Appendix A)

Ports
Status Table

PortStatus (1): OFF
PortStatus (2): OFF
PortStatus (3): OFF
PortStatus (4): OFF
PortStatus (5): OFF
PortStatus (6): OFF
PortStatus (7): OFF
PortStatus (8): OFF

Move the cursor to the desired port
and press Enter to toggle OFF/ON.
The port must be configured as an
output to be toggled.

Section 17. CR1000KD: Using the Keyboard Display

17-12

17.6 Settings

Set Time/Date
Settings
Display

Routes : xxxx
StationName : xxxx
PakBusAddress : xxxx
Security(1) : xxxx
Security(2) : xxxx
Security(3) : xxxx
IsRouter : xxxx
PakBusNodes : xxxx

Turn Off Display
Back Light
Contrast Adjust
Display Timeout: Yes
Timeout (min): 4

05/24/2000, 15:10:40
Year 2000
Month 5
Day 24
Hour 15
Minute 10
Set
Cancel

Move the cursor to time element
and press Enter to change

Section 17. CR1000KD: Using the Keyboard Display

17-13

17.6.1 Set Time / Date
Move the cursor to time element and press Enter to change it. Then move the
cursor to Set and press Enter to apply the change.

17.6.2 PakBus Settings
In the Settings menu, move the cursor to the PakBus element and press Enter to
change it. After modifying, press Enter to apply the change.

17.6.3 Configure Display

Set Time/Date
Settings
Display

Light Dark
 <- * ->

Turn Off Display
Backlight
Contrast Adjust
Display Timeout: Yes
Timeout (min): 4

Move the cursor to
Configure Display
and press Enter

Enter display timeout in minutes (max = 60)

Yes/No

On/Off

Press Enter to turn off Display

Section 17. CR1000KD: Using the Keyboard Display

17-14

This is a blank page.

18-1

Section 18. Care and Maintenance
Temperature and humidity can affect the performance of the CR1000. The
internal lithium battery must be replaced periodically.

18.1 Temperature Range
The standard CR1000 is designed to operate reliably from -25 to +50°C (-40°C
to +85°C, optional) in non-condensing humidity.

18.2 Moisture Protection
When humidity tolerances are exceeded and condensation occurs, damage to
CR1000 electronics can result. Effective humidity control is the responsibility
of the user.

Internal CR1000 module moisture is controlled at the factory by sealing the
module with a packet of silica gel inside. The desiccant is replaced whenever
the CR1000 is repaired at Campbell Scientific. The module should not be
opened by the user except to replace the lithium coin cell providing back up
power to the clock and SRAM. Repeated disassembly of the CR1000 will
degrade the seal, leading to potential moisture problems.

Adequate desiccant should be placed in the instrumentation enclosure to
prevent corrosion on the CR1000 wiring panel.

18.3 Enclosures
Campbell Scientific offers environmental enclosures for housing a CR1000 and
peripherals. These enclosures are classified as NEMA 4X (watertight, dust-
tight, corrosion-resistant, indoor and outdoor use).

Section 18. Care and Maintenance

18-2

18.4 Replacing the Internal Battery
Misuse of the lithium battery or installing it improperly can
cause severe injury. Fire, explosion, and severe burn
hazard! Do not recharge, disassemble, heat above 100°C
(212°F), solder directly to the cell, incinerate, nor expose
contents to water. Dispose of spent lithium batteries
properly.

The CR1000 contains a lithium battery that operates the clock and SRAM
when the CR1000 is not powered. The CR1000 does not draw power from the
lithium battery while it is powered by a 12 VDC supply. In a CR1000 stored at
room temperature, the lithium battery should last approximately 10 years (less
at temperature extremes). Where the CR1000 is powered most or all of the
time the lithium cell should last much longer.

While powered from an external source, the CR1000 measures the voltage of
the lithium battery daily. This voltage is displayed in the status table
(Appendix A). A new battery will have approximately 3.6 volts. The CR1000
Status Table has a “Lithium Battery” field. This field shows lithium battery
voltage. Replace the battery when voltage is approximately 2.7 V. If the
lithium cell is removed or allowed to discharge below the safe level, the
CR1000 will still operate correctly while powered. Without the lithium
battery, the clock will reset and data will be lost when power is removed.

A replacement lithium battery can be purchased from Campbell (part number
13519). TABLE 18.4-1 lists the specifications of the battery.

TABLE 18.4-1. CR1000 Lithium Battery Specifications

Manufacturer Tadiran

Model TL-59025 (3.6 V)

Capacity 1.2 Ah

Self-discharge rate 1%/year @ 20°C

Operating temperature range -55°C to 85°C

The CR1000 must be partially disassembled to replace the lithium cell.

FIGURE 18.4-1 through FIGURE 18.4-5 illustrate how to disassemble the
CR1000. Reverse these steps to reassemble the CR1000.

CAUTION

Section 18. Care and Maintenance

18-3

L
o

g
a

n
, U

ta
h

FIGURE 18.4-1. CR1000 with wiring panel.

FIGURE 18.4-2. Loosen thumbscrew to remove CR1000 canister
from wiring panel.

Section 18. Care and Maintenance

18-4

FIGURE 18.4-3. Pull edge with thumbscrew away from wiring panel.

FIGURE 18.4-4. Remove nuts to disassemble canister.

Section 18. Care and Maintenance

18-5

D
ESI PA

K

D
ESI PA

K

BA
TT

ER
Y

FIGURE 18.4-5. Remove and replace battery.

Section 18. Care and Maintenance

18-6

This is a blank page.

19-1

Section 19. Troubleshooting
If any component needs to be returned to the factory for repair or
recalibration, remember that an RMA number is required.
Contact a Campbell Scientific applications engineer to receive
the RMA number.

19.1 Programming
19.1.1 Debugging Resources

A properly deployed CR1000 measures sensors accurately and stores all data
as requested by the program. Experienced users analyze measurement data
soon after deployment to ensure the CR1000 is measuring and storing data as
desired by the programmer. Most measurement and data storage problems are
a result of one or more instances of improper program code or “bugs.”

Consult the CR1000 Status Table when a problem with a program is suspected.
Critical Status Table registries to review include:

Read more! See Appendix A for a complete list of Status Table registers
and hints on using the Status Table.

 CompileResults -- Reports messages generated by the CR1000 at program
upload and compile-time. A message will report that the program
compiled OK or that there are run-time errors. Error messages may not be
obvious because the display column is too short. Messages report
variables that caused out-of-bounds conditions, watchdog information, and
memory errors. Messages may be tagged onto this line as the program
runs.

A rare error is indicated by "mem3 fail" type messages. These messages
can be caused by random internal memory corruption. When seen on a
regular basis with a given program, an operating system error is indicated.
“Mem3 fail” messages are not caused by user error, and only rarely by a
hardware fault. Report any occurrence of this error to a Campbell
Scientific applications engineer, especially if the problem is reproducible.
Any program generating these errors is unlikely to be running correctly.

 SkippedScan / SkippedSlowScan -- Occasional skipped scans may be
expected and acceptable. However, be careful that scans that store data are
not skipped. The CR1000 automatically runs a slow sequence to update
the calibration table. When the calibration slow sequence skips, the
CR1000 will try to repeat that step of the calibration process next time
around. This simply extends calibration time. If any scan skips
repeatedly, problems are indicated.

Skipped scans in Pipeline Mode indicate an increase in the maximum
buffer depth is needed. Try increasing the number of scan buffers (third
parameter of the Scan() instruction) to a value greater than that shown in
the MaxBuffDepth register in the Status Table.

NOTE

Section 19. Troubleshooting

19-2

 SkippedRecord - Increments normally caused by skipped scans, which
occur when a table called by the skipped scan is supposed to store data.
These counters are not incremented by all events that leave gaps in data,
including the CR1000 powering down or the CR1000 clock being
changed.

 ProgErrors -- If not zero, investigate

 Memoryfree -- Too small a number leads to problems.

 VarOutOfBound - The CR1000 tries to write which variable has gone
out-of-bounds at the end of the CompileResults message. The CR1000
does not catch all out-of-bounds errors.

 WatchdogErrors -- Non-zero indicates the CR1000 has crashed, which
can be caused by power or transient voltage problems, or an operating
system or hardware problem. For many types of crashes the CR1000 will
sometimes write information at the end of the CompileResults register
indicating the nature of the last crash.

19.1.2 Program does not Compile
Although the PC CRBASIC compiler says a program compiles OK, it may not
run or even compile in the CR1000. Reasons may include:

 The CR1000 has a different (usually older) operating system that is not
compatible with the PC compiler. Check the two versions if in doubt (the
PC version is shown on the first line of the compile results).

 The program has large memory requirements for data tables or variables
and the CR1000 does not have adequate memory. This normally is
flagged at compile time, in the compile results. If this sort of error occurs,
check:

a) For copies of old programs encumbering the CPU drive. The CR1000
will keep copies of all program files ever loaded unless they are
deleted, the drive is formatted, or a new OS is loaded with DevConfig.

b) That the USR: drive, if created, is not too large. The USR: drive may
be using memory needed for the program.

c) That a program written for a 4 MB CR1000 is not now being loaded
into a 2MB CR1000.

d) That a memory card is available if the program is attempting to access
the CRD: drive.

19.1.3 Program Compiles / Does Not Run Correctly
If the program compiles but does not run correctly, timing discrepancies are
often the cause. Neither CRBASIC Editor nor the CR1000 compiler attempt to
check whether the CR1000 is fast enough to do all that the program specifies in
the time allocated. If a program is tight on time, look further at the execution
times. Check the measurement and processing times in the Status Table
(MeasureTime, ProcessTime, MaxProcTime) for all scans, then try

Section 19. Troubleshooting

19-3

experimenting with the InstructionTimes() instruction in the program.
Analyzing InstructionTimes() results can be difficult due to the multitasking
nature of the logger, but it can be a powerful way to fine tune a program.

19.1.4 NAN and ±INF
NAN (not-a-number) and ±INF (infinite) are data words indicating an
exceptional occurrence in datalogger function or processing. NAN is a
constant that can be used in expressions such as in EXAMPLE 19.1-1 NAN
can also be used in the disable variable (DisableVar) in output processing (data
storage) instructions.

EXAMPLE 19.1-1. Using NAN in an Expressions

If WindDir = NAN Then
 WDFlag = True
Else
 WDFlag=False
EndIf

19.1.4.1 Measurements and NAN
NAN results when an instruction fails to return a valid measurement.

Analog Measurements

When NAN results from analog voltage measurements, it indicates an
overrange error wherein the input voltage exceeds the programmed input range.
When NAN occurs with auto ranging, it indicates either the first or second
measurement in the autorange sequence has overranged.

 If an analog sensor is open (inputs not connected but “floating”), the inputs
will remain floating near the voltage they were last connected to; a
measurement on ±2.5 mV, ±7.5 mV, ±25 mV, or ±250 mV voltage range will
overrange and return NAN.

To make a differential measurement, voltage inputs must be within the CR1000
common mode range of ±5 V. Otherwise, the CR1000 indicates the overrange
by returning NAN.

SDI-12 Measurements

NAN results when the command issued by the SDI12Recorder() instruction
fails to get a response from an SDI-12 probe.

19.1.4.2 Floating Point Math, NAN, and ±INF
TABLE 19.1-1 lists math expressions, their CRBASIC form, and IEEE floating
point math result loaded into variables declared as FLOAT or STRING.

Section 19. Troubleshooting

19-4

TABLE 19.1-1. Math Expressions and CRBASIC Results

Expression CRBASIC Expression Result
0 / 0 0 / 0 NAN
∞ - ∞ (1 / 0) - (1 / 0) NAN
(-1) ∞ -1 ^ (1 / 0) NAN
0 * -∞ 0 * (-1 * (1 / 0)) NAN
±∞ / ±∞ (1 / 0) / (1 / 0) NAN
1∞ 1 ^ (1 / 0) NAN
0 * ∞ 0 * (1 / 0) NAN
x / 0 1 / 0 INF
x / -0 1 / -0 INF
-x / 0 -1 / 0 -INF
-x / -0 -1 / -0 -INF
∞0 (1 / 0) ^ 0 INF
0∞ 0 ^ (1 / 0) 0
00 0 ^ 0 1

19.1.4.3 Data Types, NAN, and ±INF
NAN and ±INF are presented differently depending on the declared variable
data type. Further, they are recorded differently depending on the final storage
data type chosen compounded with the declared variable data type used as the
source (TABLE 19.1-2). For example, INF in a variable declared as LONG is
represented by the integer -2147483648. When that variable is used as the
source, the final storage word when sampled as UINT2 is stored as 0.

TABLE 19.1-2. Variable and FS Data Types with NAN and ±INF

Test FS FS FS FS FS FS
Expression Variable FP2 IEEE4 UINT2 STRING BOOL LONG

 As FLOAT
Jan-00 INF INF INF 65535 +INF TRUE 2,147,483,647

0 / 0 NAN NAN NAN 0 NAN TRUE -2,147,483,648

 As LONG

1 / 0 2,147,483,647 7999 2.147484E+09 65535 2147483647 TRUE 2,147,483,647
0 / 0 -2,147,483,648 -7999 -2.147484E+09 0 -2147483648 TRUE -2,147,483,648

 As Boolean

1 / 0 TRUE -1 -1 65535 -1 TRUE -1
0 / 0 TRUE -1 -1 65535 -1 TRUE -1

 As STRING

1 / 0 +INF INF INF 65535 +INF TRUE 2,147,483,647
0 / 0 NAN NAN NAN 0 NAN TRUE -2,147,483,648

Section 19. Troubleshooting

19-5

19.2 Communications
19.2.1 RS-232

Baud rate mis-match between the CR1000 and LoggerNet is often the root of
communication problems through the RS-232 port. By default, the CR1000
attempts to adjust its baud rate to that of LoggerNet. However, settings
changed in the CR1000 to accommodate a specific RS-232 device, such as a
smart sensor, display or modem, may confine the RS-232 port to a single baud
rate. If the baud rate can be guessed at and entered into LoggerNet Setup
communications may be established. Once communications is established,
CR1000 baud rate settings can be changed. Get clues as to what the baud rate
may be set at by analyzing current and previous CR1000 programs for the
SerialOpen() instruction, which specifies a baud rate. Documentation provided
by the manufacturer of the previous RS-232 device may also hint at the baud
rate.

19.2.2 Communicating with Multiple PC Programs
A common practice is to monitor the performance of a CR1000 using
Devconfig or Loggernet while the CR1000 has an open connection to another
copy of Loggernet. For example, the main connection can be via Internet
while the performance monitoring is done via RS-232 port. This is a useful
feature of the CR1000. A problem often arises, however, in that the CR1000
gets confused when attempting this via two different ports, from two different
instances of the same PakBus address, i.e. if Loggernet and Devconfig have the
same address.

Loggernet defaults to PakBus address 4094. Devconfig is fixed
at PakBus address 4094.

The solution is to change the PakBus address in Loggernet | Setup | Options |
Loggernet Pakbus Settings). If feasible, use PC200W or PC400 instead of
Devconfig as each has a different default PakBus address from LoggerNet.

19.3 Memory Errors
CommsMemFree is a Status Table register. The first number (positive <
1000000) is the most useful. It should be around 30,000 when very little
communication is happening. A lot of PakBus or TCP/IP communication will
tend to drop this number. It should not drop down as low as 2,000. When it
gets this low, comms will try to use non-existent memory. If this occurs too
often, a watchdog will happen with a message "Out of Memory".

NOTE

Section 19. Troubleshooting

19-6

19.4 Power Supply
19.4.1 Overview

Power supply systems may include batteries, charger/regulators, and charging
sources such as solar panels or transformers. All of these components may
need to be checked if the power supply is not functioning properly.

Section 17.4.3 includes the following flowcharts:

 Battery Voltage Test
 Charging Circuit Test (when using an unregulated solar panel)
 Charging Circuit Test (when using a transformer)
 Adjusting Charging Circuit

If all of the power supply components are working properly and the system has
peripheral(s) with high current drain(s) such as satellite transmitter, verify that
the system’s power supply provides enough power. For more information,
refer to our Power Supply product literature or Application Note.

19.4.2 Troubleshooting at a Glance
Symptoms:

Possible symptoms include the CR1000 program not executing; Low12VCount
of the Status table displaying a large number.

Affected Equipment:

Batteries, charger/regulators, solar panels, transformers

Likely Cause:

Batteries may need to be replaced or recharged; charger/regulators may need to
be fixed or recalibrated; solar panels or transformers may need to be fixed or
replaced.

Required Equipment:

Voltmeter; 5 kohm resistor and 50 ohm 1 W resistor for the charging circuit
tests and to adjust the charging circuit voltage

Section 19. Troubleshooting

19-7

19.4.3 Diagnosis and Fix Procedures
19.4.3.1 Battery Voltage Test

 No

 Yes

 No No

 Yes

 No

 Yes Yes

 No

 Yes

If using a rechargeable power supply, disconnect the charging source (e.g., Solar Panel, Transformer
connected to 120 Vac) from the battery pack and wait for 20 minutes before proceeding with the test.

Set the voltmeter to read dc voltages as high as 15 Vdc.
Use the voltmeter to measure the voltage between the
+12 V and Ground terminals on the datalogger. Is the
voltage > 10.8 V?

Are you using sealed
rechargeable batteries?

Test the Battery under a Load
Program the datalogger to measure
the battery voltage (program 10)
using a 0.0156 second scan rate.
Use the voltmeter to measure the
voltage between the +12 V and
Ground terminals on the datalogger.
Is the voltage > 10.8 V?

Is the voltage
≥10.5 V?

Replace the batteries
(see note).

Recharge the batteries
(see note).

Is the battery voltage
>12 V?

The battery is good. The problems are
not caused by a poor power supply.

The battery voltage is adequate for datalogger
operation. However if the datalogger is to
function for a long period of time, Campbell
Scientific recommends replacing or, if using
sealed rechargeable batteries, recharging the
batteries so that the voltage is >12 V.

For customers using a sealed rechargeable battery that is
recharged via an unregulated solar panel or a transformer,
Campbell Scientific also recommends checking the charging
circuit.

NOTE

Section 19. Troubleshooting

19-8

19.4.3.2 Charging Circuit Test — Solar Panel

No No

Yes

Yes No

Yes

No

Yes

No
No

Yes

No Yes

Yes No

Disconnect any wires attached to the 12 V and ground terminals on the charging regulator (e.g., PS100, CH100, PS12LA).
Disconnect the battery from the charging circuit. Only the solar panel should be connected. This test assumes the solar
panel has an unregulated output.

Set the voltmeter to measure dc volt-
ages. Use the voltmeter to measure
the voltage output of the solar panel
at the “CHG” inputs on the regulator.
Is the voltage between 17 and 22 V?

NOTE: This test must be performed
on a sunny day.

Place a 5 kohm resistor between the
charger/regulator’s 12 V and ground termi-
nals. Use a voltmeter to measure the dc
voltage across the 5 kohm resistor. Is the
measured voltage between 13.3 and 14.1 V?

Remove the solar panel from
the charging circuit. Does
the solar panel have an output
voltage that is > 0 V?

Is the charger/regulator’s output voltage
to the battery between 10 and 15.5 V?

Test the Charger under a Load
Disconnect the charging source, remove the 5 kohm
resistor, and place a 50 ohm, 1 watt resistor between
the 12 V output and ground of the charger. Use the
voltmeter to measure the dc voltage across the
50 ohm resistor. Is the voltage between 13.0 and
14.0 V?

NOTE: The resistor will get HOT; do not leave
connected for more than a few seconds.

Is the voltage ≥17 V?

The solar panel is defective and
should be replaced or repaired
by Campbell Scientific. Call for
an RMA number before return-
ing the solar panel.

There might not be
enough sunlight to
perform the test or the
solar panel may be
damaged.

Connect the solar panel to the “CHG” terminals
on the charging regulator. Confirm that the
battery is disconnected and that nothing is
connected to the 12 V terminals. Is the voltage on
the “CHG” terminals ≥17 V?

The regulator is defective and should be
replaced or repaired by Campbell
Scientific. Call for an RMA number
before returning the regulator.

The charger is functioning properly. After removing
the 50 ohm resistor, the test is complete.

See “Adjusting Charging Circuit” section to cali-
brate the charging voltage or return item to CSI
for calibration. An RMA number is required to
have CSI calibrate the charging circuit.

With the charger under load, is
the “CHG” voltage >15.5 V?

There might not be enough sun-
light to perform the test.

Section 19. Troubleshooting

19-9

19.4.3.3 Charging Circuit Test — Transformer

 No No

 Yes
 Yes

 Yes Yes

 No
 No

 No

 Yes

 No

 Yes

Disconnect any wires attached to the 12 V and ground terminals on the charging regulator (e.g., PS100, CH100, PS12LA).
Disconnect the battery from the charging circuit. Only the trans-former should be connected. The transformer should be
connected to 120 Vac.

Determine whether the transformer
output is an ac or dc voltage and
set the voltmeter to read that type
of voltage. Use a voltmeter to
measure the voltage output by the
transformer. Is the charging
voltage between 17 and 22 V?

Place a 5 kohm resistor between the
charger/regulator’s 12 V and ground
terminals. Use a voltmeter to measure the
dc voltage across the 5 kohm resistor. Is
the measured voltage between 13.3 and

Remove the transformer from the
charging circuit and measure the
transformer’s output voltage. Is
the charging voltage between
17 and 22 V?

Is the charger/regulator’s output voltage to
the battery between 10 and 15.5 V?

Test the Charger under a Load
Disconnect the charging source, remove the 5 kohm resistor, and place a 50 ohm, 1 watt resistor
between the 12 V output and ground of the charger. Use the voltmeter to measure the dc voltage
across the 50 ohm resistor. Is the voltage between 13.0 and 14.0 V?

NOTE: The resistor will get HOT; do not leave connected for more than a few seconds.

The transformer is defective
and should be replaced or
repaired by Campbell
Scientific. Call for an RMA
before returning the trans-
former.

Connect the transformer to the “CHG” terminals on
the charging regulator. Confirm that the battery is
disconnected and that nothing is connected to the 12 V
terminal. Is the voltage on the “CHG” terminal ≥17 V?

The regulator is defective and should be replaced or
repaired by Campbell Scientific. Call for an RMA
number before returning the regulator.

The charger is functioning properly. After removing
the 50 ohm resistor, the test is complete.

See “Adjusting Charging Circuit” section to cali-
brate the charging voltage or return item to CSI
for calibration. An RMA number is required to
have CSI calibrate the charging circuit.

Section 19. Troubleshooting

19-10

19.4.3.4 Adjusting Charging Circuit Voltage
Campbell Scientific recommends that only a qualified electronic technician
perform the following procedure.

No

Yes

No

Yes

Place a 5 kohm resistor between the charging regulator’s
12 V output and ground terminals. Use a voltmeter to
measure the voltage across the 5 kohm resistor. Connect a
charger that provides a voltage greater than 17 V to the
input of the charge circuit. Adjust pot R3 or A12
(depending on the board version) so that the voltage across
the 5 kohm resistor is 13.5 V. Can the output voltage be
set to 13.5 V?

NOTE: The board must be about 25ºC when setting the
output to 13.5 V.

Disconnect the charging source and remove the 5 kohm
resistor. Place a 50 ohm, 1 watt resistor between the
charging regulator's 12 V output and ground terminals.
Connect the charging source and use a voltmeter to
measure the voltage across the 50 ohm resistor. Is the
measured voltage between 13.0 and 13.5 V?

NOTE: After measuring the voltage, disconnect the
charging source. If the charging source is connected
for more than a few seconds, the resistor will get hot.

Send the charger to Campbell
Scientific for repair. Call for an
RMA number before returning the
charger.

The charger is functioning
properly. Testing and adjusting
charger circuit is now complete.

A-1

Appendix A. Glossary
A.1 Terms

AC see VAC.

A/D analog-to-digital conversion. The process that translates analog voltage
levels to digital values.

accuracy a measure of the correctness of a measurement. See also Section
A.2.1 Accuracy, Precision, and Resolution.

Amperes (Amps) base unit for electric current. Used to quantify the capacity
of a power source or the requirements of a power consuming device.

analog data presented as continuously variable electrical signals.

ASCII abbreviation for American Standard Code for Information Interchange
(pronounced "askee"). A specific binary code of 128 characters
represented by 7 bit binary numbers.

asynchronous the transmission of data between a transmitting and a receiving
device occurs as a series of zeros and ones. For the data to be "read"
correctly, the receiving device must begin reading at the proper point in
the series. In asynchronous communication, this coordination is
accomplished by having each character surrounded by one or more start
and stop bits which designate the beginning and ending points of the
information (see Synchronous).

baud rate the speed of transmission of information across a serial interface,
expressed in units of bits per second. For example, 9600 baud refers to
bits being transmitted (or received) from one piece of equipment to
another at a rate of 9600 bits per second. Thus, a 7 bit ASCII character
plus parity bit plus 1 stop bit (total 9 bits) would be transmitted in 9/9600
sec. = .94 ms or about 1000 characters/sec. When communicating via a
serial interface, the baud rate settings of two pieces of equipment must
match each other.

Beacon Interval a signal broadcasted to other devices in a PakBus® network
to identify the “neighbor” devices. A beacon in a PakBus network helps
to ensure that all devices in the network are aware of the other devices that
are viable. If configured to do so, a clock set command may be
transmitted with the beacon interval. This function can be used to
synchronize the clocks of devices within the PakBus network. See also
PakBus and Neighbor Device.

binary describes data represented by a series of zeros and ones. Also describes
the state of a switch, either being on or off.

CF abbreviation for CompactFlash®, a data storage card that uses flash
memory.

code a CRBASIC program, or a portion of a program.

constant a packet of CR1000 memory given an alpha-numeric name and
assigned a fixed number.

Appendix A. Glossary

A-2

control I/O Terminals C1 - C8 or processes utilizing these terminals.

CVI Communications Verification Interval. The interval at which a PakBus
device verifies the accessibility of neighbors in its neighbor list. If a
neighbor does not communicate for a period of time equal to 2.5 x the
CVI, the device will send up to 4 Hellos. If no response is received, the
neighbor is removed from the neighbor list.

CPU central processing unit. The brains of the CR1000.

CR10X older generation Campbell Scientific datalogger replaced by the
CR1000.

CR1000KD an optional hand-held keyboard display for use with the CR1000
and CR800 dataloggers.

CRD a flash memory card or the memory drive that resides on the flash card.

CS I/O Campbell Scientific Input / Output. A proprietary serial
communications protocol.

datalogger support software includes PC200W, PC400, RTDAQ, LoggerNet

data point a data value which is sent to Final Storage as the result of an output
processing (data storage) instruction. Strings of data points output at the
same time make up a record in a data table.

DC see VDC.

DCE data communications equipment. While the term has much wider
meaning, in the limited context of practical use with the CR1000, it
denotes the pin configuration, gender and function of an RS-232 port.
The RS-232 port on the CR1000 and on many 3rd party
telecommunications devices, such as a digital cellular modems, are DCE.
To interface a DCE device to a DCE device requires a null-modem cable.

desiccant a material that absorbs water vapor to dry the surrounding air.

DevConfig Device Configuration Utility, available with LN, PC400, or from
the CSI website.

DHCP Dynamic Host Configuration Protocol. A TCP/IP application protocol.

differential a sensor or measurement terminal wherein the analog voltage
signal is carried on two leads. The phenomenon measured is proportional
to the difference in voltage between the two leads.

digital numerically presented data.

Dim a CRBASIC command for declaring and dimensioning variables.
Variables declared with DIM remain hidden during datalogger operation.

dimension to code for a variable array. DIM example(3) creates the three
variables example(1), example(2), and example(3). DIM example(3,3)
creates nine variables. DIM example (3,3,3) creates 27 variables.

DNS Domain Name System. A TCP/IP application protocol.

Appendix A. Glossary

A-3

DTE data terminal equipment. While the term has much wider meaning, in
the limited context of practical use with the CR1000, it denotes the pin
configuration, gender and function of an RS-232 port. The RS-232 port
on the CR1000 and on many 3rd party telecommunications devices, such
as a digital cellular modems, are DCE. Attachment of a null-modem cable
to a DCE device effectively converts it to a DTE device.

Earth Ground1) Using a grounding rod or another suitable device to tie a
system or device to the earth at the datalogger site. Such a connection is
used as a sink for electrical transients and possibly damaging potentials,
such as those produced by a nearby lightning strike. 2) A reference
potential for analog voltage measurements. Note that most objects have a
“an electrical potential” and the potential at different places on the earth -
even a few meters away - may be different. See ground loop.

engineering units units that explicitly describe phenomena, as opposed to the
CR1000 measurement units of millivolts or counts.

ESD electrostatic discharge

excitation application of a precise voltage, usually to a resistive bridge circuit.

execution time time required to execute an instruction or group of instructions.
If the execution time of a Program Table exceeds the table's Execution
Interval, the Program Table will be executed less frequently than
programmed (Section OV4.3.1 and 8.9).

expression a series of words, operators, or numbers that produce a value or
result.

final storage that portion of memory allocated for storing Output Arrays.
Final Storage may be viewed as a ring memory, with the newest data
being written over the oldest. Data in Final Storage may be displayed
using the Mode or sent to various peripherals (Sections 2, 3, and OV4.1).

FTP File Transfer Protocol. A TCP/IP application protocol.

full duplex definition

garbage the refuse of the data communication world. When data are sent or
received incorrectly (and there are numerous reasons this happens) a
string of invalid, meaningless characters (garbage) results. Two common
causes are: 1) a baud rate mismatch and 2) synchronous data being sent to
an asynchronous device and vice versa.

ground being or related to an electrical potential of 0 Volts.

half duplex definition

Handshake, Handshaking the exchange of predetermined information
between two devices to assure each that it is connected to the other.
When not used as a clock line, the CLK/HS (pin 7) line in the datalogger
CS I/O port is primarily used to detect the presence or absence of
peripherals.

Hertz abbreviated Hz. Unit of frequency described as cycles or pulses per
second.

Appendix A. Glossary

A-4

high resolution a high resolution data value has 5 significant digits and may
range in magnitude from +.00001 to +99999. A high resolution data
value requires 2 Final Storage locations (4 bytes). All Input and
Intermediate Storage locations are high resolution. Output to Final
Storage defaults to low resolution; high resolution output must be
specified by Instruction 78.

HTML Hypertext Markup Language. A programming language used for the
creation of web pages.

HTTP Hypertext Transfer Protocol. A TCP/IP application protocol.

indexed input location an Input location entered as an instruction parameter
may be indexed by keying "C" before it is entered by keying "A"; two
dashes (--) will appear at the right of the display. Within a loop
(Instruction 87, Section 12), this will cause the location to be incremented
with each pass through the loop. Indexing is also used with Instruction
75 to cause an Input location, which normally remains constant, to be
incremented with each repetition.

INF infinite or undefined. A data word indicating the result of a function is
infinite or undefined.

input/output instructions used to initiate measurements and store the results
in Input Storage or to set or read Control/Logic Ports.

integer a number written without a fractional or decimal component. 15 and
7956 are integers. 1.5 and 79.56 are not integers.

intermediate storage that portion of memory allocated for the storage of
results of intermediate calculations necessary for operations such as
averages or standard deviations. Intermediate storage is not accessible to
the user.

IP Internet Protocol. A TCP/IP internet protocol.

IP Address A unique address for a device on the internet.

loop in a program, a series of instructions which are repeated a prescribed
number of times, followed by an "end" instruction which exists the
program from the loop.

loop counter increments by 1 with each pass through a loop.

low resolution the default output resolution. A low resolution data value has 4
significant decimal digits and may range in magnitude from +0.001 to
+6999. A low resolution data value requires 1 Final Storage location (2
bytes).

manually initiated initiated by the user, usually with a keyboard, as opposed
to occurring under program control.

milli the SI prefix denoting 1 / 1000s of a base SI unit.

Modbus communication protocol published by Modicon in 1979 for use in
programmable logic controllers (PLCs).

Appendix A. Glossary

A-5

modem/terminal any device which: 1) has the ability to raise the CR23X's
ring line or be used with the SC32A to raise the ring line and put the
CR23X in the Telecommunications Command State and 2) has an
asynchronous serial communication port which can be configured to
communicate with the CR23X.

multi-meter an inexpensive and readily available device useful in
troubleshooting data acquisition system faults.

mV the SI abbreviation for milliVolts.

NAN not a number. A data word indicating a measurement or processing
error. Voltage overrange, SDI-12 sensor error, and undefined
mathematical results can produce NAN.

Neighbor Device devices in a PakBus® network that can communicate
directly with an individual device without being routed through an
intermediate device. See also PakBus and Beacon Interval.

NIST National Institute of Standards and Technology

Node part of the description of a datalogger network when using LoggerNet.
Each node represents a device that the communications server will dial
through or communicate with individually. Nodes are organized as a
hierarchy with all nodes accessed by the same device (parent node)
entered as child nodes. A node can be both a parent and a child.

Null-modem a device, usually a multi-conductor cable, which converts an RS-
232 port from DCE to DTE or from DTE to DCE.

Ohm the unit of resistance. Symbol is the Greek letter Omega (Ω). 1 Ω equals
the ratio of 1 Volt divided by 1 Amp.

Ohms Law describes the relationship of current and resistance to voltage.
Voltage equals the product of current and resistance (V = I*R).

on-line data transfer routine transfer of data to a peripheral left on-site.
Transfer is controlled by the program entered in the datalogger.

output a loosely applied term. Denotes a) the information carrier generated by
an electronic sensor, b) the transfer of data from variable storage to final
storage, or c) the transfer of power from the CR1000 or a peripheral to
another device.

output array a string of data points output to Final Storage. Output occurs
only when the Output Flag (Flag 0) is set. The first point of an Output
Array is the Output Array ID, which gives the Program Table Number and
the Instruction Location Number of the Instruction which sets the Output
Flag. The data points which complete the Array are the result of the
Output Processing Instructions which are executed while the Output Flag
is set. The Array ends when the Output Flag is reset at the end of the
table or when another Instruction acts upon the Output Flag. Output
occurs only when the output flag is set. (Section 2.1)

output interval the time interval between initiations of a particular Output
Array. Output occurs only when the Output Flag is set. The flag may be
set at fixed intervals or in response to certain conditions (Sections OV4
and 1.2.1).

Appendix A. Glossary

A-6

output processing instructions process data values and generate Output
Arrays. Examples of Output Processing Instructions include Totalize,
Maximize, Minimize, Average, etc. The data sources for these
Instructions are values in Input Storage. The results of intermediate
calculations are stored in Intermediate Storage. The ultimate destination
of data generated by Output Processing Instructions is usually Final
Storage but may be Input Storage for further processing. The transfer of
processed summaries to Final Storage takes place when the Output Flag
has been set by a Program Control Instruction.

parameter used in conjunction with CR23X Program Instructions, parameters
are numbers or codes which are entered to specify exactly what a given
instruction is to do. Once the instruction number has been entered in a
Program Table, the CR23X will prompt for the parameters by displaying
the parameter number in the ID Field of the display.

period average a measurement technique utilizing a high-frequency digital
clock to measure time differences between signal transitions. Sensors
commonly measured with period average include vibrating wire
transducers and water content reflectometers.

peripheral any device designed for use with, and requiring, the CR1000 (or
another CSI datalogger) to operate.

Ping a software utility that attempts to contact another specific device in a
network.

precision a measure of the repeatability of a measurement. See also Section
A.2.1 Accuracy, Precision, and Resolution.

print device any device capable of receiving output over pin 6 (the PE line) in
a receive-only mode. Printers, "dumb" terminals, and computers in a
terminal mode fall in this category.

print peripheral see Print Device.

processing instructions these Instructions allow the user to further process
input data values and return the result to Input Storage where it can be
accessed for output processing. Arithmetic and transcendental functions
are included in these Instructions.

program control instructions used to modify the sequence of execution of
Instructions contained in Program Tables; also used to set or clear flags.

program table that portion of memory allocated for storing programs
consisting of a sequence of user instructions which control data
acquisition, processing, and output to Final Storage. Programming can be
separated into 2 tables, each having its own user-entered Execution
Interval. A third table is available for programming subroutines which
may be called by instructions in Tables 1 or 2. The  and  Modes are
used to access Tables 1 and 2. The  Mode is used to access Subroutine
Table 3. The length of the tables is constrained only by the total memory
available for programming (Section 1.5). Tables 1 and 2 have
independent execution intervals. Table 1 execution has the higher
priority; it may interrupt Table 2.

Appendix A. Glossary

A-7

Poisson Ratio a ratio used in strain measurements equal to transverse strain
divided by extension strain. v = -(εtrans / εaxial).

Public a CRBASIC command for declaring and dimensioning variables.
Variables declared with PUBLIC can be monitored during datalogger
operation.

pulse an electrical signal characterized by a sudden increase in voltage follow
by a short plateau and a sudden voltage decrease.

regulator a device for conditioning an electrical power source. CSI regulators
typically condition AC or DC voltages greater than 16 V to about 14
VDC.

resistance a feature of an electronic circuit that impedes or redirects the flow
of electrons through the circuit.

resistor a device that provides a known quantity of resistance.

resolution a measure of the fineness of a measurement. See also Section A.2.1
Accuracy, Precision, and Resolution.

ring line (Pin 3) line pulled high by an external device to "awaken" the
CR23X.

RMS root mean square or quadratic mean. A measure of the magnitude of
wave or other varying quantities.

RS-232 Recommended Standard 232. A loose standard defining how two
computing devices can communicate with each other. The
implementation of RS-232 in CSI dataloggers to PC communications is
quite rigid, but transparent to most users. Implementation of RS-232 in
CSI datalogger to RS-232 smart sensor communications is quite flexible.

sample rate the rate at which measurements are made. The measurement
sample rate is primarily of interest when considering the effect of time
skew (i.e., how close in time are a series of measurements). The
maximum sample rates are the rates at which measurements are made
when initiated by a single instruction with multiple repetitions.

scan (execution interval) is the time interval between initiating each execution
of a given Scan interval. If the Execution Interval is evenly divisible into
24 hours (86,400 seconds), the Execution Interval will be synchronized
with 24 hour time, so that the table is executed at midnight and every
execution interval thereafter. The table will be executed for the first time
at the first occurrence of the Execution Interval after compilation. If the
Execution Interval does not divide evenly into 24 hours, execution will
start on the first even second after compilation. See Section OV4.3.1 for
information on the choice of an Execution Interval.

SDI-12 Serial/Digital Data Interface at 1200 bps. Communication protocol for
transferring data between data recorders and sensors.

SDM Synchronous Device for Measurement. A peripheral device that
communicates with the CR1000 via hardwire over short distance using a
proprietary protocol.

Appendix A. Glossary

A-8

Seebeck Effect induces microvolt level thermal electromotive forces (EMF)
across junctions of dissimilar metals in the presence of temperature
gradients. This is the principle behind thermocouple temperature
measurement. It also causes small correctable voltage offsets in CR1000
measurement circuitry.

Send denotes the program send button in LoggerNet, PC400, and PC200W
datalogger support software.

serial a loose term denoting output or a device that outputs an electronic series
of alphanumeric characters.

SI Système Internationale The International System of Units.

signature a number which is a function of the data and the sequence of data in
memory. It is derived using an algorithm which assures a 99.998%
probability that if either the data or its sequence changes, the signature
changes.

single-ended denotes a sensor or measurement terminal where in the analog
voltage signal is carried on a single lead, which is measured with respect
to ground.

SMTP Simple Mail Transfer Protocol. A TCP/IP application protocol.

SNP Snapshot File.

state whether a device is on or off.

string a datum consisting of alpha-numeric characters.

support software include PC200W, PC400, RTDAQ, LoggerNet

synchronous the transmission of data between a transmitting and receiving
device occurs as a series of zeros and ones. For the data to be "read"
correctly, the receiving device must begin reading at the proper point in
the series. In synchronous communication, this coordination is
accomplished by synchronizing the transmitting and receiving devices to a
common clock signal (see Asynchronous).

table overruns skipped scans occurring when the CR23X program is too long
for the execution interval. Table overruns can cause errors in pulse
measurements.

task 1) grouping of CRBASIC program instructions by the CR1000. Tasks
include measurement, SDM, and processing. Tasks are prioritized by a
CR1000 operating in pipeline mode.

TCP/IP Transmission Control Protocol / Internet Protocol.

Telnet a software utility that attempts to contact and interrogate another
specific device in a network.

throughput the throughput rate is the rate at which a measurement can be
made, scaled to engineering units, and the reading stored in Final Storage.
The CR23X has the ability to scan sensors at a rate exceeding the
throughput rate (see SAMPLE RATE). The primary factor affecting
throughput rate is the amount of processing specified by the user. In

Appendix A. Glossary

A-9

normal operation, all processing called for by an instruction must be
completed before moving on the next instruction. The maximum
throughput rate for a fast single-ended measurement is approximately 192
measurements per second (12 measurements, repeated 16 times per
second). This rate is possible if the CR23X's self-calibration function is
suspended (this is accomplished by entering Instruction 24 into Program
Table 2 while leaving the Execution Interval 0 so Program Table 2 never
executes).

When the self-calibration function is operating, the maximum throughput
rate for a fast, single-ended measurement is 192 measurements per second
(12 measurements, 16 times per second).

toggle to reverse the current power state.

USR: drive. A portion of CR1000 memory dedicated to the storage of image
or other files.

UPS uninterruptible power supply. A UPS can be constructed for most
datalogger applications using AC line power, an AC/AC or AC/DC wall
adapter, a charge controller, and a rechargeable battery.

variable A packet of CR1000 memory given an alpha-numeric name, which
holds a potentially changing number or string.

VAC Volts Alternating Current. Mains or grid power is high-level VAC,
usually 110 VAC or 220 VAC at a fixed frequency of 50 Hz or 60 Hz.
High-level VAC is used as a primary power source for Campbell
Scientific power supplies. Do not connect high-level VAC directly to the
CR1000. The CR1000 measures varying frequencies of low-level VAC in
the range of ±20 VAC.

VDC Volts Direct Current. The CR1000 operates with a nominal 12 VDC
power supply. It can supply nominal 12 VDC, regulated 5 VDC, and
variable excitation in the ±2.5 VDC range. It measures analog voltage in
the ±5.0 VDC range and pulse voltage in the ±20 VDC range.

volt meter an inexpensive and readily available device useful in
troubleshooting data acquisition system faults.

Volts SI unit for electrical potential.

watch dog timer an error checking system that examines the processor state,
software timers, and program related counters when the datalogger is
running its program. If the processor has bombed or is neglecting
standard system updates or if the counters are outside the limits, the watch
dog timer resets the processor and program execution. Voltage surges and
transients can cause the watch dog timer to reset the processor and
program execution. When the watch dog timer resets the processor and
program execution, an error count will be incremented in the
watchdogtimer entry of the status table. A low number (1 to 10) of watch
dog timer resets is of concern, but normally indicates the user should just
monitor the situation. A large number (>10) of error accumulating over a
short period of time should cause increasing alarm since it indicates a
hardware or software problem may exist. When large numbers of watch
dog timer resets occur, consult with a Campbell Scientific applications
engineer.

Appendix A. Glossary

A-10

weather tight describes an instrumentation enclosure impenetrable by
common environmental conditions. During extraordinary weather events,
however, seals on the enclosure may be breached.

XML Extensible Markup Language.

A.2 Concepts
A.2.1 Accuracy, Precision, and Resolution

Three terms often confused are accuracy, precision, and resolution. Accuracy
is a measure of the correctness of a single measurement, or the group of
measurements in the aggregate. Precision is a measure of the repeatability of a
group of measurements. Resolution is a measure of the fineness of a
measurement. Together, the three define how well a data acquisition system
performs. To understand how the three relate to each other, consider “target
practice” as an analogy. The figure below shows four targets. The bull’s eye
on each target represents the absolute correct measurement. Each shot
represents an attempt to make the measurement. The diameter of the projectile
represents resolution.

The objective of a data acquisition system should be high accuracy, high
precision, and to produce data with resolution as high as appropriate for a given
application.

B-1

Appendix B. Status Table
The CR1000 status table contains system operating status information
accessible via CR1000KD keypad or PC software DevConfig, LoggerNet, or
PC400. TABLE B-1 lists some of the more common uses of status table
information. TABLE B-2 is a comprehensive list of status table variables with
brief descriptions.

Status Table information is easily viewed by going to LoggerNet | Connect |
Datalogger | View Station Status. However, be aware that information
presented in View Station Status is not automatically updated. Rather, click
the refresh button each time an update is desired. Alternatively, use the
Numeric displays of the connect screen to show critical values and have these
update automatically, or use Devconfig, which polls the status table at regular
intervals without use of a refresh button. Note that a lot of comms and other
activity is needed to generate the Status Table, so if the CR1000 is very tight
on time, just getting the Status Table itself repeatedly could push timing over
the edge and cause skipped scans.

TABLE B-1. Common Uses of the Status Table

Feature or Status Field Feature or Status Field
Suspect Constituent to Consult Suspect Constituent to Consult
Full Reset of CR1000 FullMemReset (Enter 98765) PakBus IsRouter
Program Execution BuffDepth
 MaxBuffDepth
Operating System OSVersion PakBusNodes
 OSDate CentralRouters
 OSSignature Beacon
 WatchdogErrors Verify
Power Supply Battery MaxPacketSize
 WatchdogErrors CRBASIC Program ProgSignature
 Low12VCount Compile Results
 Low5VCount ProgErrors
 StartUpCode VarOutofBound
SRAM LithiumBattery SkippedScan
 MemorySize SkippedSlowScan
 MemoryFree PortStatus
Telecommunications PakBusAddress PortConfig
 Low5VCount Measurements ErrorCalib
 RS-232Handshaking Data SkippedRecord
 RS-232Timeout DataFillDays
 CommActive
 CommConfig
 Baudrate

Appendix B. Status Table

B-2

TABLE B-2. Status Fields and Descriptions

Status Fieldname Description Variable
Type

Default Normal
Range

User can
change?

Info
Type

RecNum Record number for this set of data _ _ _
TimeStamp Time the record was generated Time _ _ _
OSVersion Version of the Operating System String _ _ _ Status
OSDate Date OS was released. String _ _ _ Status
OSSignature Operating System Signature Integer _ _ _ Status
SerialNumber CR1000 specific serial number. Stored

in FLASH memory.
Integer _ _ _ Status

RevBoard Hardware revision number. Stored in
FLASH memory.

Integer _ _ _ Status

StationName1 Name of the CR1000. Stored in
FLASH memory.

String _ Yes Config

PakBusAddress2 Logger PakBus address. String 1 1 to 3999 Yes Config
PB

ProgName Name of current (running) program. String _ _ _ Status
StartTime Time the program began running. Time _ _ _ Status
RunSignature Signature of the compiled binary data

structure for the current program. Value
is independent of comments added or
non-functional changes to the program

Integer _ _ _ Status

ProgSignature Signature of the current running
program file including comments.

Integer _ _ _ Status

Battery Current value of the battery voltage.
Measurement is made in the
background calibration.

Float _ 9.6-16
Volts

_ Measu
re

PanelTemp Current wiring panel temperature.
Measurement is made in the
background calibration.

Float _ _ _ Measu
re

WatchdogErrors3 Number of Watchdog errors that have
occurred while running this program.

Integer 0 0 Can Reset
= 0

Error

LithiumBattery4 Current voltage of the lithium battery.
Measurement is updated in background
calibration.

Float _ 2.7-3.6
Volts

_ Measu
re

Low12VCount5 Number of occurrences of the 12VLow
signal being asserted. When this
condition is detected, the CR1000
ceases measurements and goes into a
low power mode until proper system
voltage is restored.

Integer 0 0 Can Reset
= 0

Error

Low5VCount Number of occurrences of the
5VExtLow signal being asserted.

Integer 0 0 Can Reset
= 0

Error

CompileResults Contains error messages generated by
compilation or during run time.

String _ 0 _ Error

Appendix B. Status Table

B-3

Status Fieldname Description Variable

Type
Default Normal

Range
User can
change?

Info
Type

StartUpCode6 A code variable that indicates how the
system woke up from power off.

String 0 0 _ Status
/ Error

ProgErrors The number of compile or runtime
errors for the current program.

Integer _ 0 _ Error

VarOutOfBound7 Number of times an array was accessed
out of bounds.

Integer 0 0 Can Reset
= 0

Error

SkippedScan Number of skipped scans that have
occurred while running the current
scan.

Integer 0 _ Can Reset
= 0

Error

SkippedSystemScan8 The number of scans skipped in the
background calibration.

Integer
array

0 _ Can
Reset = 0

Error

SkippedSlowScan9 The number of scans skipped in a
SlowSequence(s).

Interger
array.

0 _ Can
Reset = 0

Error

ErrorCalib8 The number of erroneous calibration
values measured. The erroneous value
is discarded (not included in the filter
update)..

Integer 0 0 _ Error

MemorySize Total amount of SRAM (bytes) in this
device.

_ _ 2097152
(2M)
4194304
(4M)

_ Status

MemoryFree Bytes of unallocated memory on the
CPU (SRAM). All free memory may
not be available for data tables. As
memory is allocated and freed, holes of
unallocated memory, which are
unusable for final storage, may be
created .

Integer _ _ _ Status

CPUDriveFree Bytes remaining on the CPU: drive.
This drive resides in the serial FLASH
and is always present. CRBASIC
programs are normally stored here.

Integer

USRDriveFree Bytes remaining on the USR: drive.
USR: drive is user-created and
normally used to store .jpg and other
files.

Integer No Mem

CommsMemFree Array of two values. First value
displays in sequence 1) comms memory
free (+ number < 1000000), 2) main
memory free (negative), 3) total of 1
and 2 (1,000,000 + total memory free.
Second value is the number of small
blocks available.

Integer
array of
2

_ (1) 2000-
15000

_ Status

Appendix B. Status Table

B-4

Status Fieldname Description Variable

Type
Default Normal

Range
User can
change?

Info
Type

FullMemReset A value of 98765 written to this
location will initiate a full memory
reset. Full memory reset will
reinitialize RAM disk, final storage,
PakBus memory, and return parameters
to defaults.

Integer 0 _ Enter
98765 to
Reset

Config

DataTableName Programmed name of data table(s).
Each table has its own entry.

String
array of
number
of data
tables

_ _ _ Prog

SkippedRecord10 Variable array that posts how many
records have been skipped for a given
table. Each table has its own entry.

Integer
array

0 0 Can
Reset = 0

Error

DataRecordSize Number of records in a table. Each
table has its own entry in this array.

Integer
array

_ _ _

SecsPerRecord Output interval for a given table. Each
table has its own entry in this array.

Integer
array

_ _ _

DataFillDays Time in days to fill a given table. Each
table has its own entry in this array.

Integer
array

_ _ _

CardStatus Contains a string with the most recent
card status info.

String _ _ _ Status

CardBytesFree11 Gives the number of bytes free on the
CF card.

Integer _ _ _ Status

MeasureOps Number of task sequencer opcodes
required to do all measurements in the
system. This value includes the
calibration opcodes (compile time) and
the background calibration (system)
slow sequence opcodes.

Integer _ _ _ Status

MeasureTime Time (μs) required to make the
measurements in this scan, including
integration and settling times.
Processing occurs concurrent with this
time so the sum of measure time and
process time is not the time required in
the scan instruction.

Integer _ _ _ Status

ProcessTime Processing time (μs) of the last scan.
Time is measured from the end of the
EndScan instruction (after the
measurement event is set) to the
beginning of the EndScan (before the
wait for the measurement event begins)
for the subsequent scan.

Integer _ _ _ Status

MaxProcTime Maximum time (μs) required to run
through processing for the current scan.
This value is reset when the scan exits.

Integer _ _ Can
Reset = 0

Status

Appendix B. Status Table

B-5

Status Fieldname Description Variable

Type
Default Normal

Range
User can
change?

Info
Type

BuffDepth Shows the current Pipeline Mode
processing buffer depth., which
indicates how far processing is
currently behind measurement.

MaxBuffDepth Gives the maximum number of buffers
processing lagged measurement.

LastSystemScan8 The last time the background
calibration executed.

Integer
array

_ _ _ Status

LastSlowScan9 The last time SlowSequence scan(s)
executed.

Integer
array

_ _ _ Status

SystemProcTime8,12 The time (μs) required to process the
background calibration.

Integer
array

_ _ _ Status

SlowProcTime9,12 The time (μs) required to process
SlowSequence scan(s).

Integer
array

_ _ _ Status

MaxSystemProcTime8,13 The maximum time (μs) required to
process the background calibration.

Integer
array

_ _ _ Status

MaxSlowProcTime9,13 The maximum time (μs) required to
process SlowSequence scan(s).

Integer
array

_ _ _ Status

PortStatus Array of Boolean values posting the
state of control ports. Values updated
every 500 ms.

Boolean
array of
8

False True or
False

Yes Status

PortConfig Array of strings explaining the use of
the associated control port. Valid
entries are: Input, Output, SDM, SDI-
12, Tx, and Rx.

String
array of
8

Input Input or
Output

_ Status

SW12Volts Status of switched 12 V control port. Boolean False True or
False

Yes Status

Security14 Array of the three security settings or
codes. Will not be shown if security is
enabled.

Integer
array of
3

0, 0, 0 0 - 65535
(0 is no
security)

Yes Status

RS-232Power

(RS-232 Always On)

Controls whether the RS-232 port will
remain active even when
communication is not taking place. If
RS-232 handshaking is enabled
(handshaking buffer size is non-zero),
this setting must be set to yes

Boolean 0 0 or 1

RS-232Handshaking

(RS-232 Hardware
Handshaking Buffer Size)

If non zero, hardware handshaking is
active on the RS-232 port. This setting
specifies the maximum packet size sent
between checking for CTS.

Integer 0

RS-232Timeout

(RS-232 Hardware
Handshaking Timeout)

For RS-232 hardware handshaking, this
specifies in tens of msecs the timeout
that the datalogger will wait between
packets if CTS is not asserted.

Integer 0

Appendix B. Status Table

B-6

Status Fieldname Description Variable

Type
Default Normal

Range
User can
change?

Info
Type

CommActive15 Array of Boolean values telling if
communications is currently active on
the corresponding port. Aliased to
CommActiveRS-232,
CommActiveME,
CommActiveCOM310,
CommActiveSDC7,
CommActiveSDC8,
CommActiveSDC10
CommActiveSDC11
CommActiveCOM1,
CommActiveCOM2,
CommActiveCOM3,
CommActiveCOM4

Boolean
array of
9

False,
except
for the
active
COM

True or
False

_ Status

CommConfig Array of values telling the
configuration of comm ports. Aliased to
CommConfigRS-232,
CommConfigME,
CommConfigCOM310,
CommConfigSDC7,
CommConfigSDC8,
CommConfigSDC10
CommConfigSDC11
CommConfigCOM1,
CommConfigCOM2,
CommConfigCOM3,
CommConfigCOM4

Integer
array of
9

RS-
232-
SDC8
= 4
COM1-
4 = 0

0 or 4 _ Config

Baudrate16 Array of baudrates for comms. Aliased
to: BaudrateRS-232,
BaudrateME,
BaudrateSDC
BaudrateCOM1
BaudrateCOM2
BaudrateCOM3
BaudrateCOM4

Integer
array of
9

RS-
232=-
115200
ME-
SDC8 =
115200

COM1-
4 = 0

1200,
2400,
4800,
9600,
19.2k,
38.4k,
57.6k,
115.2k

Yes, can
also use
SerialOut
instructio
n to setup.

Config

IsRouter Is the CR1000 configured to act as
router

Boolean False 0 or 1 Yes Config
PB

PakBusNodes Number of nodes (approximately) that
will exist in the PakBus network. This
value is used to determine how much
memory to allocate for networking.

Integer 50 >=50 Yes Config
PB

CentralRouters(1) - (8)17 Array of (8) PakBus addresses for
central routers.

Integer
array of
8

0 _ Yes Config
PB

Appendix B. Status Table

B-7

Status Fieldname Description Variable

Type
Default Normal

Range
User can
change?

Info
Type

Beacon Array of Beacon intervals (in seconds)
for comms ports. Aliased to BeaconRS-
232,
BeaconME,
BeaconSDC7,
BeaconSDC8,
BeaconSDC10,
BeaconSDC11,
BeaconCOM1,
BeaconCOM2,
BeaconCOM3,
BeaconCOM4

Integer
array of
9

0 0 - approx.
65,500

Yes Config
PB

Verify Array of verify intervals (in seconds)
for com ports. Aliased to
VerifyRS-232,
VerifyME,
VerifySDC7,
VerifySDC8,
VerifySDC10,
VerifySDC11,
VerifyCOM1,
VerifyCOM2,
VerifyCOM3,
VerifyCOM4

Integer
array of
9

0 0 - approx.
65,500

_ Status

MaxPacketSize Maximum number of bytes per data
collection packet.

_ 1000 _ _

USRDriveSize Configures the USR: drive. If 0, the
drive is removed. If non-zero, the drive
is created.

Integer 0 8192 Min Yes Mem

IPInfo Indicates current parameters for IP
connection.

String

pppInterface Controls which datalogger port PPP
service will be configured to use.
Warning: If this value is set to CS I/O
ME, do not attach any other devices to
the CS I/O port.

Integer 0
(Inactiv
e)

pppIPAddr

Specifies the IP address that will be
used for the PPP interface if that
interface is active (the PPP Interface
setting needs to be set to something
other than Inactive).

String 0.0.0.0

pppUsername Specifies the user name that will be
used to log in to the PPP server.

String _

pppPassword Specifies the password that will be used
to log in to the PPP server.

String _

Appendix B. Status Table

B-8

Status Fieldname Description Variable

Type
Default Normal

Range
User can
change?

Info
Type

pppDial Specifies the dial string that follows
ATD (e.g., #777 for Redwing CDMA)
or a list of AT commands separated by
';' (e.g., ATV1;
AT+CGATT=0;ATD*99***1#), that
will be used to initialise and dial
through a modem before a PPP
connection is attempted. A blank string
means that dialling is not necessary
before a PPP connection is established.

String _

pppDialResponse Specifies the response expected after
dialing a modem before a PPP
connection can be established.

String connect _ Yes

Messages Contains a string of messages that can
be entered by the user.

String _ Yes

CalGain18 Calibration table of Gain values. Each
integration / range combination has a
gain associated with it. These numbers
are updated by the background slow
sequence if needed in the program.

Float
array of
18

_ . _ Calib

CalSeOffSet18 Calibration table of single ended offset
values. Each integration / range
combination has a single ended offset
associated with it. These numbers are
updated by the background slow
sequence if needed in the program.

Integer
array of
18

_ close to 0 _ Calib

CalDiffOffset18 Calibration table of differential offset
values. Each integration / range
combination has a differential offset
associated with it. These numbers are
updated by the background slow
sequence if needed in the program.

Integer
array of
18

_ close to 0 _ Calib

1 The StationName instruction can also be used in a program to write to this
field.

2 Pak Bus Addresses 1 to 4094 are valid. Addresses >= 4000 are generally
used for a PC by PC200, PC400, or LoggerNet.

3 Watchdog errors are automatically reset upon compiling a new program.

4 Replace the lithium battery if <2.7V. See section 1.10.2 for replacement
directions.

5 The 12V low comparator has some variation, but typically triggers at
about 9.0 volts. The minimum specified input voltage of 9.6 V will not
cause a 12 V low, but a 12 V low condition will stop the program
execution before the CR1000 will give bad measurements due to low of
supply voltage.

6 Currently not being used (12/1/2004)

Appendix B. Status Table

B-9

7 The Variable out of Bounds error occurs when a program tries to write to
an array variable outside of its declared size. It is a programming error
that causes this, and should not be ignored. When the datalogger detects
that a write outside of an array is being attempted it does not perform the
write and increments the VOOB in the status table. The compiler and pre-
compiler can only catch things like reps too large for an array etc. If an
array is used in a loop or expression the pre-compiler does not (in most
cases cannot) check to see if an array will be accessed out of bounds (i.e.
accessing an array with a variable index such as arr(index) = arr(index-1),
where index is a variable).

8 The background calibration runs automatically in a hidden SlowSequence
scan (Section 3.8.).

9 If no user entered SlowSequence scans are programmed, this variable
does not appear. If multiple user entered SlowSequence scans
programmed, this variable becomes an array with a value for each scan.

10 The order of tables is the order in which they are declared.

11 Card bytes free is shown = -1 when no card is present.

12 Displays a large number until a SlowSequence scan runs.

13 Displays 0 until a SlowSequence scan runs.

14 Security can be changed via DeviceConfig, CR1000KD, PBGraph,
StatusTable, and SetSecurity instruction. Shows -1 if security code has not
been given / deactivated.

15 When the SerialOpen instruction is used CommsConfig is loaded with the
format parameter of that instruction. Currently (11/2004), the only
formatting option available is 0 = No error checking. PakBus
communication can occur concurrently on the same port If the port was
previously opened (in the case of the CP UARTS) for PakBus, or if the
port is always opened (CS-9pin, and RS-232) for PakBus the code will be
4.

16 The value shown is the initial baud rate the CR1000 will use. A negative
value will allow the CR1000 to auto baud but will dictate at which baud
rate to begin.

17 A list of up to eight PB addresses for routers that can act as Central
Routers. See CSI DevConfig (Device Configuration) software for more
information.

18 (1) 5000 mV range 250 uS integration,
(2) 2500 mV range 250 uS integration,
(3) 250 mV range 250 uS integration,
(4) 25 mV range 250 uS integration,
(5) 7.5 mV range 250 uS integration,
(6) 2.5 mV range 250 uS integration,
(7) 5000 mV range 1/60 Hz integration,
(8) 2500 mV range 1/60 Hz integration,
(9) 250 mV range 1/60 Hz integration,
(10) 25 mV range 1/60 Hz integration,
(11) 7.5 mV range 1/60 Hz integration,
(12) 2.5 mV range 1/60 Hz integration,
(13) 5000 mV range 1/50 Hz integration,

Appendix B. Status Table

B-10

(14) 2500 mV range 1/50 Hz integration,
(15) 250 mV range 1/50 Hz integration,
(16) 25 mV range 1/50 Hz integration,
(17) 7.5 mV range 1/50 Hz integration,
(18) 2.5 mV range 1/50 Hz integration

This is a blank page.

C-1

Appendix C. Serial Port Pin Outs
C.1 CS I/O Communications Port

Pin configuration for the CR1000 CS I/O port is listed in TABLE C-1.

TABLE C-1. CS I/O Pin Description

ABR = Abbreviation for the function name.
PIN = Pin number.
O = Signal Out of the CR1000 to a peripheral.
I = Signal Into the CR1000 from a peripheral.

PIN ABR I/O Description

1 5 V O 5V: Sources 5 VDC, used to power peripherals.

2 SG Signal Ground: Provides a power return for pin 1
(5V), and is used as a reference for voltage levels.

3 RING I Ring: Raised by a peripheral to put the CR1000 in
the telecommunications mode.

4 RXD I Receive Data: Serial data transmitted by a peripheral
are received on pin 4.

5 ME O Modem Enable: Raised when the CR1000
determines that a modem raised the ring line.

6 SDE O Synchronous Device Enable: Used to address
Synchronous Devices (SDs), and can be used as an
enable line for printers.

7 CLK/HS I/O Clock/Handshake: Used with the SDE and TXD
lines to address and transfer data to SDs. When not
used as a clock, pin 7 can be used as a handshake
line (during printer output, high enables, low
disables).

8 +12 VDC

9 TXD O Transmit Data: Serial data are transmitted from the
CR1000 to peripherals on pin 9; logic low marking
(0V) logic high spacing (5V) standard asynchronous
ASCII, 8 data bits, no parity, 1 start bit, 1 stop bit,
300, 1200, 2400, 4800, 9600, 19,200, 38,400,
115,200 baud (user selectable).

Appendix C. Serial Port Pin Outs

C-2

C.2 RS-232 Communications Port
Pin configuration for the CR1000 RS-232 9-pin port is listed in TABLE C-2.
Information for using a null modem with the RS-232 9-pin port is given in
TABLE C-3.

The Datalogger RS-232 port can function as either a DCE (Data
Communication Equipment) or DTE (Data Terminal Equipment) device. For
the Datalogger RS-232 port to function as a DTE device, a null modem cable is
required. The most common use of the Datalogger's RS-232 port is a
connection to a computer DTE device. A standard DB9-to-DB9 cable can
connect the computer DTE device to the Datalogger DCE device. The
following table describes the Datalogger's RS-232 pin function with standard
DCE naming notation. Note that pins 1, 4, 6 and 9 function differently than a
standard DCE device, this is to accommodate a connection to a modem or other
DCE device via a null modem.

TABLE C-2. Datalogger RS-232 Pin-Out

PIN = Pin number
O = Signal Out of the CR1000 to a RS-232 device
I = Signal Into the CR1000 from a RS-232 device
X = Signal has no connection (floating)

PIN

DCE
Function

Logger
Function

I/O

Description

1 DCD DTR (tied to pin
6)

O* Data Terminal Ready

2 TXD TXD O Asynchronous data
Transmit

3 RXD RXD I Asynchronous data
Receive

4 DTR N/A X* Not Connected
5 GND GND GND Ground
6 DSR DTR O* Data Terminal Ready
7 CTS CTS I Clear to send
8 RTS RTS O Request to send
9 RI RI I* Ring

* Different pin function compared to a standard DCE device. These pins will
accommodate a connection to modem or other DCE devices via a null modem
cable.

Appendix C. Serial Port Pin Outs

C-3

TABLE C-3. Standard Null Modem
Cable or Adapter Pin Connections*

DB9 DB9
pin 1 & 6 ---------- pin 4
pin 2 ---------- pin 3
pin 3 ---------- pin 2
pin 4 ---------- pin 1 & pin 6
pin 5 ---------- pin 5
pin 7 ---------- pin 8
pin 8 ---------- pin 7
pin 9 XXXXX pin 9

(Most null modems
have NO connection)

* If the null modem cable does not connect pin 9 to pin 9, then the modem will
need to be configured to output a RING (or other characters previous to the
DTR being asserted) on the modem’s TX line to wake the datalogger and
activate the DTR line or enable the modem.

Appendix C. Serial Port Pin Outs

C-4

D-1

Appendix D. ASCII Table

American Standard Code for Information Interchange
Decimal Values and Characters

Dec. Char. Dec. Char. Dec. Char. Dec. Char.
0 CONTROL @ 32 SPACE 64 @ 96 `
1 CONTROL A 33 ! 65 A 97 a
2 CONTROL B 34 " 66 B 98 b
3 CONTROL C 35 # 67 C 99 c
4 CONTROL D 36 $ 68 D 100 d
5 CONTROL E 37 % 69 E 101 e
6 CONTROL F 38 & 70 F 102 f
7 CONTROL G 39 ' 71 G 103 g
8 CONTROL H 40 (72 H 104 h
9 CONTROL I 41) 73 I 105 i
10 CONTROL J 42 * 74 J 106 j
11 CONTROL K 43 + 75 K 107 k
12 CONTROL L 44 , 76 L 108 l
13 CONTROL M 45 - 77 M 109 m
14 CONTROL N 46 . 78 N 110 n
15 CONTROL O 47 / 79 O 111 o
16 CONTROL P 48 0 80 P 112 p
17 CONTROL Q 49 1 81 Q 113 q
18 CONTROL R 50 2 82 R 114 r
19 CONTROL S 51 3 83 S 115 s
20 CONTROL T 52 4 84 T 116 t
21 CONTROL U 53 5 85 U 117 u
22 CONTROL V 54 6 86 V 118 v
23 CONTROL W 55 7 87 W 119 w
24 CONTROL X 56 8 88 X 120 x
25 CONTROL Y 57 9 89 Y 121 y
26 CONTROL Z 58 : 90 Z 122 z
27 CONTROL [59 ; 91 [123 {
28 CONTROL \ 60 < 92 \ 124 |
29 CONTROL] 61 = 93] 125 }
30 CONTROL ^ 62 > 94 ^ 126 ~
31 CONTROL _

63 ?

95 _

127 DEL

Appendix D. ASCII Table

D-2

This is a blank page.

Index1

Index to Sections
The index lists page numbers to headings of sections containing desired information. Consequently, sought after
information may be on pages subsequent to those listed in the index.

12 V Output, 3-4
12 Volt Supply, 4-2
5 V, C-1
5 V Output, 3-4
5 Volt Supply, 4-1
50 Hz, 6-1
60 Hz, 6-1
7999, 9-9
A/D, A-1
Abbreviations, 9-29
ABS, 10-20
AC, A-1
AC Excitation, 4-1
AC Noise, 4-8, 4-10
AC Noise Rejection, 4-8
AC Sine Wave, 2-7, 4-32
Accuracy, 2-1, 4-25, A-1, A-10
ACOS, 10-19
AddPrecise, 10-23
Address, 11-21, 14-1, 14-2, B-1
Addressing - Modbus, 15-5
Alias, 9-4, 9-6, 9-11, 9-21, 10-1
AM25T, 10-15
Amperage, 4-2
Amperes (Amps), A-1
Analog, 2-4, 3-2, A-1
Analog Control, 5-3
Analog Input, 2-4, 2-5, 2-6
Analog Input Range, 4-4
Analog Measurements, 19-3
Analog Output, 3-3, 5-3, 10-12
AND, 10-18
Anemometer, 2-7
AngleDegrees, 10-1
Argos, 10-40
ArgosData, 10-40
ArgosDataRepeat, 10-40
ArgosError, 10-40
ArgosSetup, 10-40
ArgosTransmit, 10-40
Arithmetic, 9-22
Arithmetic Functions, 10-20
Array, 9-22, B-1
Arrays, 9-6, 9-23
AS, 10-1
ASCII, 10-24, A-1, D-1
ASIN, 10-19
Asynchronous, A-1
Asynchronous Communication, 2-7

ATN, 10-19
Attributes, 12-8
Automatic Calibration, 4-5
Automatic Calibration Sequence, 4-7, 9-19
Automobile Power, 6-2
AutoRange, 4-4
Average, 10-4
AvgRun, 10-23
AvgSpa, 10-22
Background Calibration, 4-5, 4-7, 4-13, 9-19
Backup, 2-2
Backup Battery, 3-11, 18-2
Battery, 2-2, 3-6, 3-11, 6-1, 10-10, 11-26, 18-2,

18-3, 19-7, B-1
Battery Backup, 2-2
Baud, 2-10, 8-1, 10-29, 10-30, 10-38, 10-40, 15-2,

15-4, 15-6, 19-5, B-1
Baud Rate, A-1
Baud Rates, B-1
Beacon, 14-3
Beacon Interval, A-1, B-1
Beginner Software, 2-10
BeginProg … EndProg, 10-7
Binary, 9-3, A-1
Binary Control, 5-2
Binary Format, 9-3
Bit Shift, 10-17
Board Revision Number, B-1
BOOL8, 9-7, 9-9
Boolean, 9-23, 9-24, 19-4
BOOLEAN Data Type, 9-7, 9-9
BrFull, 10-11
BrFull6W, 10-12
BrHalf, 10-11
BrHalf3W, 10-11
BrHalf4W, 10-11
Bridge, 4-18
Bridge Measurement, 4-19, 10-11
Bridges, 2-6, 4-16
Bridges - Sensors, 2-6
Broadcast, 10-31, 14-3
Buffer Depth, B-1
Buffer Depth - Maximum, B-1
Cable Length, 4-10
CAL Files, 11-1
CalFile, 10-34
Calibrate, 10-39
Calibration, 3-11, 4-5, 4-7, 4-13, 4-34, 9-19, 11-1,

11-2

Index to Sections

Index-2

Calibration - Error, B-1
Calibration – Field Calibration Example Programs,

11-3
Calibration – Field Calibration Offset, 11-5
Calibration – Field Calibration Slope / Offset, 11-6
Calibration – Field Calibration Slope Only, 11-8
Calibration – Field Calibration Zero, 11-3
Calibration - Manual Field Calibration, 11-2
Calibration - Single-point Field Calibration, 11-3
Calibration - Two-point Field Calibration, 11-3
Calibration Functions, 10-39
Calibration Gain, B-1
Calibration, Self-, 4-13
Call, 10-7
Callback, 11-15, 11-34
CallTable, 10-7
Card Bytes Free, B-1
Card Status, B-1
CardOut, 10-3
Care, 3-10, 18-1
Ceiling, 10-20
Central Routers, B-1
CF, 12-4, 12-9, A-1
CF Card, 8-4, 13-3, 17-10
Charging Circuit, 19-9, 19-10
CheckPort, 10-12
CheckSum, 10-24
CHR, 10-24
Circuit, 4-33, 5-3
Circuits, 4-18
Clients, 16-2
CLK/HS, C-1
Clock - Synchronizing, 2-16
Clock Functions, 10-26
ClockReport, 10-26, 10-32
ClockSet, 10-26
Code, A-1
COM Port Connection, 2-9
Comm Port Configurations, B-1
Comm Ports Active, B-1
Commands - SDI-12, 11-21
Comments, 9-1
Common Mode, 4-4, 4-5
Common Mode Range, 7-3
Common-mode, 4-4
Common-mode Voltage, 4-2
Comms Memory Free, B-1
Communication, 19-5
Communications, 3-8, 11-34, 13-1, 15-1, 19-5
CompactFlash, 12-4, 12-9, 17-10
CompactFlash Card, 8-4
Compile Results, B-1
ComPortIsActive, 10-10
Conditional Compilation, 11-32
Conditional Compile, 11-33
Conditioning Circuit, 4-33

Configure Display, 17-13
Connections, 2-2, 2-9, 3-2
Const, 10-1
Constant, 9-11, A-1
Constants, 9-10, 9-25
ConstTable … EndConstTable, 10-1
Control, 2-8, 3-3, 4-2, 5-3, 10-7, 10-9, 11-36
Control I/O, A-2
Control Output Expansion, 5-1
Control Ports, 2-7, 4-32
Conversion, 9-25
Converting Programs, 9-3
COS, 10-19
COSH, 10-20
Covariance, 10-4, 10-22
CovSpa, 10-22
CPU, A-2
CPU Drive Free, B-1
CR1000 - Battery Backup, 2-2
CR1000 - Calibration, 3-11
CR1000 – Communicating With, 2-15
CR1000 - Mounting, 2-2
CR1000 - Overview, 3-1
CR1000 - Power Supply, 2-2, 3-6, 6-1
CR1000 - Programming, 2-16
CR1000 - Settings, 8-4
CR1000 - Wiring Panel, 2-2, 2-9, 3-2
CR1000 Configuration, 8-1
CR1000KD, 3-9, 17-1, A-2
CR10X, 9-3, A-2
CRBASIC Editor, 9-2
CRBASIC Program, 2-16
CRBASIC Programming, 9-1
CRD, A-2
CS I/O, A-2, C-1
CS I/O Port, 3-5
CS110, 10-14
CS110Shutter, 10-14
CS616, 10-14
CS7500, 10-14
CSAT3, 10-14
CTS Clear To Send, B-2
Current, 4-2
Custom, 3-9, 10-28
Custom - Menus, 11-32
Custom Display, 17-5
CVI, A-2
Data - Collecting, 2-16
Data - Monitoring, 2-16, 2-17
Data … Read … Restore, 10-9
Data Acquisition System, 3-1
Data Acquisition System - Components, 2-1
Data Acquisition System - Data Retrieval, 2-1
Data Acquisition System - Datalogger, 2-1
Data Acquisition System - Sensors, 2-1, 3-2
Data Collection, 2-1

Index to Sections

Index-3

Data Fill Days, B-1
Data Format, 13-3
Data Point, A-2
Data Record Size, B-1
Data Retrieval, 2-1, 13-1, 13-3
Data Storage, 3-7, 10-3, 10-4, 12-1
Data Storage - Trigger, 11-35
Data Table, 9-12
Data Table Names, B-1
Data Tables, 2-16, 9-11, 9-28, 10-3, 10-35, 17-6
Data Type, 9-7, 9-24
Data Types, 9-7, 9-8, 9-23
DataEvent, 10-3
DataGram, 10-32
DataInterval, 10-3
DataInterval() Instruction, 9-14
Datalogger, 2-1
Datalogger Support Software, 3-11, A-2
DataLong … Read … Restore, 10-9
DataTable … EndTable, 10-3
DataTable() Instruction, 9-14
Date, 17-13
DaylightSaving, 10-26
DaylightSavingUS, 10-27
DC, A-2
DC Excitation, 4-1
DCE, 3-5, A-2, A-3, A-5
Debugging, 19-1
Declarations, 9-6, 10-1
Declarations - Data Tables, 10-3
Declarations - Modbus, 15-4
Delay, 10-7
Deployment, 8-7
Desiccant, 3-10, 18-1, A-2
DevConfig, 8-1, 8-2, A-2
Device Configuration, 8-1, 8-2
Device Map, 14-6
DewPoint, 10-22
DHCP, 11-19, A-2
Diagnosis – Power Supply, 19-7
Diagnostics, 10-10
DialModem, 10-38
DialSequence … EndDialSequence, 10-32
DialVoice, 10-27
Differential, 2-4, 2-5, 2-6, A-2
Differential Calibration Offset, B-1
Digital, A-2
Digital I/O, 2-8, 3-2, 4-32, 10-12, 11-34
Digital I/O Ports, 2-7, 5-2
Dim, 10-1, A-2
Dimension, A-2
Dimensions, 9-7
Disable Variable, 9-15, 19-3
DisableVar, 19-3
Display, 3-9, 11-32, 17-1
Display - Custom, 17-5

DisplayMenu … EndMenu, 10-29
DisplayValue, 10-29
DNP, 10-39
DNP3, 3-9, 10-39, 15-1
DNPUpdate, 10-39
DNPVariable, 10-39
DNS, 11-19, A-2
Do … Loop, 10-7
Documentation, 9-1
Dry Bulb, 10-22
DSP4, 10-3
DTE, 3-5, A-2, A-3, A-5
Earth Ground, 3-4, A-3
Edge Timing, 2-7
Edit Files, 17-9
Edit Program, 17-9
Editor, 2-10
Email, 10-37, 11-14
EMailRecv, 10-37
EMailSend, 10-37
Enclosures, 18-1
Engineering Units, A-3
Environmental Enclosures, 18-1
Erasing all Memory, B-1
Error - Programming, 19-2
Error - Thermocouple, 4-24, 4-27, 4-28
Errors, 4-11, 4-22, 4-23, 4-24, 4-29, 19-3, 19-4, 19-5
Errors - Thermocouples, 4-21, 4-24, 4-25, 4-26,

4-27, 4-28
ESD, 3-4, 7-1, A-3, A-9
ESSInitialize, 10-6
ESSVariables, 10-2
ETsz, 10-5
Excitation, 4-1, 10-12, A-3
Excitation Reversal, 4-6, 4-8
ExciteV, 10-12
Execution Interval, 9-16, 9-17
Execution Time, A-3
Exit, 10-7
EXP, 10-20
Expression, A-3
Expressions, 9-21, 9-22, 9-23, 9-24, 9-27
Expressions - Logical, 9-25
Expressions - String, 9-27
External Power Supply, 3-4
False, 9-26
FFT, 10-4, 10-22
FFTSpa, 10-22
Field Calibration, 4-34, 11-1
FieldCal, 10-39, 11-3
FieldCal - Multiplier, 11-8
FieldCal – Multiplier Only, 11-9
FieldCal - Offset, 11-6, 11-8
FieldCal - Zero, 11-4
FieldCalStrain, 10-40, 11-10, 11-12
FieldNames, 10-4

Index to Sections

Index-4

File Attributes, 12-8
File Control, 12-6
File Display, 17-8
File Management, 10-34
FileClose, 10-34
FileList, 10-34
FileManage, 10-34
FileMark, 10-35
FileOpen, 10-34
FileRead, 10-34
FileReadLine, 10-34
FileRename, 10-35
FileSize, 10-35
FileTime, 10-35
FileWrite, 10-35
Fill-and-Stop, 12-4
FillStop, 10-3
Final Storage, A-3
Final Storage Tables, 17-6
FindSpa, 10-34
Firmware, 3-6
Fixed Voltage Range, 4-4
Flags, 9-11, 15-4
Flat Map, 14-6
FLOAT, 9-7, 9-23, 9-24, 9-25, 19-4
Floating Point, 9-22
Floor, 10-20
For ... Next, 10-8
Format - Numerical, 9-3
FormatFloat, 10-24
FP2, 9-7, 9-9
FRAC, 10-20
Frequency, 2-7, 4-29, 4-31
FTP, A-3
FTP Client, 11-18
FTP Server, 11-18
FTPClient, 10-37
Full Bridge, 2-6, 4-16
Full Duplex, A-3
Full Memory Reset, B-1
Function Codes - Modbus, 15-5
Gain, 9-21, 9-22
Garbage, A-3
Gas-discharge Tubes, 7-1
GetDataRecord, 10-32
GetRecord, 10-35
GetVariables, 10-32
Glossary, A-1
Glossary - Modbus, 15-3
GOES, 10-41
GOESData, 10-41
GOESGPS, 10-41
GOESSetup, 10-41
GOESStatus, 10-41
Gradients, 4-23, 4-24
Ground, 3-4, 7-2, A-3

Ground Loop, 7-5
Ground Potential, 7-4
Grounding, 3-11, 7-1, 7-3
Half Bridge, 2-6, 4-16
Half Duplex, A-3
Handshake, Handshaking, A-3
Hello-message, 14-3
Hello-request, 14-3
Hertz, A-3
HEX, 10-25
Hexadecimal, 9-3
HexToDec, 10-25
High Resolution, A-4
Histogram, 10-6
Histogram4D, 10-6
Histograms, 10-6
HTML, 11-16, A-4
HTTP, 11-15, A-4
HTTPOut, 10-37
Humidity, 3-10, 18-1
HydraProbe, 10-14
I/O Ports, 2-7
ID, 8-4
IEEE4, 9-7, 9-9
If ... Then ... Else … ElseIf ... EndIf, 10-8
IfTime, 10-27
IIF, 10-18
IMP, 10-18
Include, 10-35
Indexed Input Location, A-4
INF, 19-3, A-4
Infinite, 19-3
Information Services, 10-37, 11-14
INMARSAT-C, 10-42
Input Channel, 2-4, 2-5, 2-6
Input Range, 4-4
Input Reversal, 4-6, 4-8
Input/Output Instructions, A-4
INSATData, 10-42
INSATSetup, 10-42
INSATStatus, 10-42
Installation, 2-2
InStr, 10-25
Instructions, 9-20
InstructionTimes, 10-10
INT or FIX, 10-21
INTDV, 10-21
Integer, A-4
Integers, 9-24
Integration, 4-8
Intermediate Storage, A-4
Internal Battery, 3-11, 18-2
Interrupts, 2-7
Introduction, 1-1
Inverse Format Registers - Modbus, 15-5
IP, 11-14, 11-19, A-4

Index to Sections

Index-5

IP - Modbus, 15-6
IP Address, A-4
IP Information, B-1
IPTrace, 10-37
Junction Box, 4-29
Keyboard, 3-9
Keyboard Display, 3-9, 10-28, 11-32, 17-1
Leads, 4-10
Leaf Node, 14-2
Leaf Nodes, 14-1
Left, 10-25
Len, 10-25
LevelCrossing, 10-6
Lightning, 2-2, 3-11, 7-1, A-3
Linear Sensors, 4-34
Link Performance, 14-5
Lithium Battery, 18-2, B-1
LN or LOG, 10-21
LoadFieldCal, 10-40
LOG10, 10-21
Logger Control, 8-10
LoggerNet, 16-1, 16-2
Logic, 9-27
Logical Expressions, 9-25
Logical Operators, 10-18
Long, 19-4
LONG, 9-7, 9-9, 9-23, 9-24, 9-25
Long Leads, 4-10
Loop, A-4
Loop Counter, A-4
Low 12 V Counter, B-1
Low 5 V Counter, B-1
Low Resolution, A-4
LowerCase, 10-25
Low-level AC, 5-4
LTrim, 10-25
Maintenance, 3-10, 18-1
Manually Initiated, A-4
Math, 9-23, 10-16, 19-3
Mathematical Operations, 9-23
Mathematical Operators, 10-16
Maximum, 10-4
Maximum Process Time, B-1
MaxSpa, 10-23
ME, C-1
MeasOff, 4-5
Measure Time, B-1
Measurement, 10-10
Measurement - Sequence, 4-3
Measurement - Timing, 4-3
Measurement Errors, 4-11
Measurement Instruction, 9-20
Median, 10-4
Memory, 3-7, 9-23, 12-1
Memory - Conservation, 12-6
Memory - Free, B-1

Memory - Size, B-1
Memory Drives, 12-5
Memory Reset, 12-6, B-1
MemoryTest, 10-10
MenuItem, 10-29
MenuPick, 10-29
Messages, B-1
Mid, 10-25
Milli, A-4
Millivoltage Measurement, 4-2
Minimum, 10-4
MinSpa, 10-23
MOD, 10-21
Modbus, 3-8, 10-39, 11-19, 15-2, 15-3, 15-4, 15-7,

A-4
Modbus - Slave, 15-10
Modbus Slave, 15-6
ModBusMaster, 10-39
ModBusSlave, 10-39
Modem Control, 10-38
Modem/Terminal, A-5
ModemCallback, 10-38
ModemHangup … EndModemHangup, 10-38
Moisture, 3-10, 18-1
Moment, 10-4
Monitoring Data, 2-16, 2-17
Mounting, 2-2
Move, 10-34
MoveBytes, 10-29
MovePrecise, 10-6
Multi-meter, A-5
Multiplexers, 5-1
Multiplier, 9-21, 9-22
mV, A-5
Names, 9-21
NAN, 4-4, 4-5, 7-3, 9-9, 19-3, A-5
Neighbor, 14-3
Neighbor Device, A-5
Neighbor Filters, 14-3
Network, 10-32
NetworkTimeProtocol, 10-37
NewFieldCal, 10-40
NewFile, 10-35
Nine Pin Connectors, C-1
NIST, A-5
NL100, 15-7
NL100 - Modbus, 15-6
NL115, 15-7
Node, A-5
Nodes, 14-1
Noise, 4-8, 4-10, 4-26, 6-1
Nominal Power, 3-6
NOT, 10-18
Not-a-number, 19-3
NSEC, 9-7, 9-9, 11-36
Null-modem, A-2, A-3, A-5

Index to Sections

Index-6

Numerical Formats, 9-3
Offset, 4-7, 9-21, 9-22
Ohm, A-5
Ohms Law, A-5
OID, 4-4
OMNISAT, 10-41
OmniSatData, 10-41
OmniSatRandomSetup, 10-41
OmniSatStatus, 10-41
OmniSatSTSetup, 10-41
On-line Data Transfer, A-5
Opcodes, B-1
Open Input Detect, 4-4
Open Inputs, 4-5
OpenInterval, 10-3
Operating System, 8-2, 8-3
Operating Temperature Range, 18-1
Operators, 10-16, 10-18
OR, 10-18
OR Diode Circuit, 6-2
OS, 8-2, 8-3
OS Date, B-1
OS Signature, B-1
OS Version, B-1
Output, A-5
Output Array, A-5
Output Interval, A-5, B-1
Output Processing, 9-15, 10-4
Output Processing Instructions, A-6
Output Trigger, 11-34
OutputOpt, 11-27
Overrun, 19-1, B-1
Overview, 3-1
Overview - Modbus, 15-2
Overview – Power Supply, 19-6
Packet Size, B-1
PakBus, 3-8, 10-30, 10-31, 14-1, 14-2, 14-5, 15-7
PakBus Address, B-1
PakBus Network, 14-2
PakBus Nodes, B-1
PakBus Router, B-1
PakBusClock, 10-27, 10-32
Panel Temperature, 4-22, 4-23, 4-24, 4-27, 4-29,

B-1
PanelTemp, 10-10
Parameter, A-6
Password, 3-10
PC Programs, 19-5
PC Support Software, 3-11
PC200W, 2-10, 2-15, 16-1
PC400, 16-1
PCM, 4-4
PDA Support, 16-3
PeakValley, 10-5
Peer-to-peer, 10-31
Period Average, 2-7, 3-2, 4-33, 10-12, A-6

PeriodAvg, 10-12
Peripheral, A-6
Peripheral Port, 3-5
Peripherals, 5-1
Piezometer, 2-1, 3-2
Ping, 11-19, 14-5, A-6
Pipeline Mode, 4-2, 9-18, 9-19
PipelineMode, 10-2
Poisson Ratio, A-7
Polarity, 2-9
Polarity Reversal, 4-6, 4-8
Polynomial - Thermocouple, 4-27
Port Configuration, B-1
Port Settings, 8-8
Port Status, B-1
PortGet, 10-12
Ports, 2-7, 17-11
PortsConfig, 10-12
PortSet, 10-12
Power, 2-9, 3-4, 4-2, 5-2, 6-2
Power Budget, 6-1, 11-26
Power Consumption, 6-1
Power Requirement, 6-1
Power Supply, 2-2, 3-6, 6-1, 11-26, 19-6, 19-7
Power Switching, 5-3
Power-up, 12-9
PPP, 10-37, 11-14
ppp Dial Response, B-1
ppp Dial String, B-1
ppp Interface, B-1
ppp IP Address, B-1
ppp Password, B-1
ppp Username, B-1
PPPClose, 10-37
PPPOpen, 10-37
Precision, 2-1, A-6, A-10
PreserveVariables, 10-2
Pressure Transducer, 4-13
Primer, 2-1
Print Device, A-6
Print Peripheral, A-6
Priority, 9-18
Probes, 2-1, 3-2
Process Time, B-1
Processing, 10-16
Processing Instructions, A-6
Program, 3-6
Program - Arrays, 9-6
Program – Compile Error, 19-2
Program - Constants, 9-10
Program – Data Storage Processing Instructions,

9-20
Program - Data Tables, 9-11
Program - Data Types, 9-7
Program - DataInterval() Instruction, 9-14
Program - DataTable() Instruction, 9-14

Index to Sections

Index-7

Program - Declarations, 9-6, 10-1
Program - Dimensions, 9-7
Program - Documenting, 9-1
Program - Expressions, 9-21, 9-22
Program – Field Calibration, 11-2
Program - Flags, 9-11
Program - Floating Point Arithmetic, 9-22
Program - Instructions, 9-20
Program - Mathematical Operations, 9-23
Program - Measurement Instructions, 9-20
Program - Modbus, 15-4
Program - Multiplier, 9-21
Program - Names in Parameters, 9-21
Program - Offsets, 9-21
Program - Output Processing, 9-15
Program - Overrun, 19-1, B-1
Program - Parameter Types, 9-20
Program - Pipeline Mode, 9-18
Program - Resource, 11-1
Program – Runtime Error, 19-2
Program - Sequential Mode, 9-19
Program - Structure, 9-4, 9-5
Program - Subroutines, 9-16
Program - Task Priority, 9-18
Program - Timing, 9-16, 9-17
Program - Variables, 9-6
Program Control Instructions, A-6
Program Editor, 2-10
Program Errors, B-1
Program Generator, 2-10
Program Name, B-1
Program Table, A-6
Programming, 2-16, 3-6, 9-1, 9-3
Programming Examples, 4-12, 4-19, 9-1, 9-3, 9-5,

9-6, 9-7, 9-11, 9-12, 9-15, 9-16, 9-17, 9-20,
9-21, 9-22, 9-23, 9-24, 9-25, 9-27, 10-17, 10-31

ProgSignature, B-1
Protection, 3-10
PRT, 10-22
PTemp, 4-22
Public, 10-2, A-7
Pull into Common Mode, 4-4
Pulse, 2-7, 3-2, A-7
Pulse Count, 4-29
Pulse Input, 2-7, 4-31
Pulse Input Expansion, 5-1
Pulse Measurement, 10-12
Pulse Ports, 4-32
PulseCount, 10-12
PulseCountReset, 10-6
PulsePort, 10-13
PWR, 10-21
Quarter Bridge, 2-6, 4-16, 11-10
Quarter Bridge Shunt, 11-13
Quarter Bridge Zero, 11-13
Quickstart Tutorial, 2-1

RainFlow, 10-6
Randomize, 10-23
Range Limits, 9-9
RC Resistor Shunt, 11-11
Read, 10-9
ReadIO, 10-13
RealTime, 10-10, 10-27
Record Number, B-1
Recorder, 2-1
RectPolar, 10-22
Reference Junction, 4-27, 4-28
Reference Temperature, 4-22, 4-23, 4-24, 4-27,

4-28, 4-29
Reference Voltage, 7-4
RefTemp, 4-22, 4-23, 4-24, 4-27, 4-28, 4-29
Regulator, A-7
Relay, 5-3
Relay Driver, 4-2
Relay Drivers, 5-2
Relays, 5-2
Replace, 10-26
Reset, 12-6, B-1
ResetTable, 10-36
Resistance, A-7
Resistive Bridge, 2-6, 4-16
Resistor, A-7
Resolution, 2-1, 9-9, A-7, A-10
Resolution - Thermocouple, 4-26
Restore, 10-10
Retries, 10-31
Retrieving Data, 2-16
RevDiff, 4-5
Reverse Polarity, 2-9, 6-1
RevEx, 4-5
Right, 10-25
Ring, 10-27, C-1
RING, C-1
Ring Line (Pin 3), A-7
Ring Memory, 12-4
RMS, A-7
RMSSpa, 10-23
RND, 10-23
Round, 10-21
Route, 10-32
Router, 14-2
Routers, 14-1
Routes, 10-33
RS-232, 2-8, 2-9, 3-2, 11-34, 15-8, 19-5, A-7
RS-232 Handshaking, B-1
RS-232 Measurements, 4-34
RS-232 Port, 3-5
RS-232 Power, B-1
RS-232 Timeout, B-1
RS-485, 15-8
RTrim, 10-25
RunProgram, 10-35

Index to Sections

Index-8

RX, C-1
Sample, 10-5
Sample Rate, A-7
SampleFieldCal, 10-5, 10-39
SampleMaxMin, 10-5
Satellite, 10-40
SatVP, 10-22
Saving Memory, 9-23
SCADA, 3-8, 3-9, 10-39, 15-1, 15-2
Scan, 9-16, 9-17
Scan (execution interval), A-7
Scan … ExitScan … NextScan, 10-8
Scan Interval, 9-16, 9-17
Scientific Notation, 9-3
SDE, C-1
SDI-12, 11-21, 11-25, 11-26, A-7
SDI-12 Measurements, 4-34, 19-3
SDI-12 Recorder, 10-13
SDI-12 Sensor, 10-13
SDI-12 Support, 10-13, 11-20
SDI12Recorder, 10-13
SDI12SensorResponse, 10-13
SDI12SensorSetup, 10-13
SDM, 2-7, 3-2, A-7
SDMAO4, 10-15
SDMCAN, 10-15
SDMCD16AC, 10-15
SDMCVO4, 10-15
SDMINT8, 10-15
SDMIO16, 10-15
SDMSIO4, 10-15
SDMSpeed, 10-15
SDMSW8A, 10-15, 10-16
SDMTrigger, 10-15, 10-16
SDMX50, 10-15, 10-16
SecsPerRecord, B-1
Security, 3-10, B-1
Seebeck Effect, A-8
Select Case … Case … Case Is … Case Else …

EndSelect, 10-8
Self-Calibration, 4-13
Send, A-8
SendData, 10-33
SendFile, 10-33
SendGetVariables, 10-33
SendTableDef, 10-33
SendVariables, 10-33
Sensor Support, 2-1, 4-1
Sensors, 2-1, 3-2, 4-1
Sensors - Analog, 2-4, 4-2
Sensors - Bridges, 4-16
Sensors - Frequency, 2-7
Sensors – Period Average, 2-7
Sensors - Pulse, 2-7
Sensors - RS-232, 2-8
Sensors - Serial, 2-8

Sensors – Sine Wave, 2-7
Sensors – Square Wave, 2-7
Sensors - Thermocouples, 4-21
Sensors - Voltage, 4-2
Sequential Mode, 4-2, 9-19
SequentialMode, 10-2
Serial, 2-8, 3-2, A-8
Serial I/O, 10-29
Serial Input, 11-34
Serial Input Expansion, 5-1
Serial Number, B-1
Serial Port, C-1
Serial Port Connection, 2-9
Serial Server, 11-19
SerialClose, 10-29
SerialFlush, 10-29
SerialIn, 10-30
SerialInBlock, 10-30
SerialInChk, 10-30
SerialInRecord, 10-30
SerialOpen, 10-30
SerialOut, 10-30
SerialOutBlock, 10-30
Server, 16-2
Set CR1000 ID, 8-4
Set Time and Date, 17-13
SetSecurity, 10-2
SetStatus ("FieldName", Value), 10-36
Settings, 8-5, 17-12
Settings - CS I/O, 15-9
Settings – ModBus RS-232, 15-8
Settings - PakBus, 15-7, 17-13
Settings - RS-485, 15-8
Settling Errors, 4-11
Settling Time, 4-8, 4-10, 4-11, 4-12, 4-13
SGN, 10-21
Short Cut, 2-11, 16-1
Shortcut, 2-10
Shunt Calibration, 11-13
Shunt Zero, 11-14
SI Système Internationale, A-8
Signal Conditioner, 7-5
Signal Settling Time, 4-10, 4-11
Signature, 3-8, 8-2, 10-10, 10-24, A-8, B-1
SIN, 10-20
Sine Wave, 2-7, 4-32
Single-ended, 2-4, 2-5, 2-6, A-8
Single-ended Calibration Offset, B-1
Single-ended Offset, 4-7
SINH, 10-20
Skipped Records, B-1
Skipped Scan, 19-1, B-1
Skipped Slow Scan, B-1
Slope, 9-21, 9-22
Slow Scan, B-1
Slow Sequence, 10-9

Index to Sections

Index-9

SMTP, 11-20, A-8
SNMP, 11-19
SNP, A-8
Software, 3-11
Software - Beginner, 2-10
Solar Panel, 19-8
SortSpa, 10-23
Span, 9-21, 9-22
Spark Gap, 7-1
Specifications, 3-13
SplitStr, 10-26
Sqr, 10-21
Square Wave, 2-7, 4-31
SRAM, 12-4
Standard Deviation, 11-31
Start Time, B-1
Start Up Code, B-1
Starter Software, 2-10
State, 2-7, 2-8, A-8
StaticRoute, 10-33
Station Name, 8-4, 10-2, B-1
Status, 17-11
Status Table, B-1, B-2
StdDev, 10-5
StdDevSpa, 10-23
Storage, 10-3
Strain, 4-19, 4-20
Strain Calculations, 4-19
StrainCalc, 10-22
StrComp, 10-26
String, 19-4, A-8
STRING, 9-7, 9-9
String Expressions, 9-27
String Functions, 10-24
Sub, Exit Sub, End Sub, 10-2
SubMenu … EndSubMenu, 10-29
Subroutines, 9-16, 11-27
SubScan … NextSubScan, 10-9
Support Software, A-8
SW12, 10-12
SW-12, 3-3
SW-12, B-1
Switch Closure, 4-32
Switched 12 V, 3-3, 5-2
Switched 12 V Control, 5-2
Synchronous, A-8
Table Overrun, 19-1, B-1
Table Overruns, A-8
TableFile, 10-4
TableName.EventCount, 10-36
TableName.FieldName, 10-36
TableName.Output, 10-36
TableName.Record, 10-36
TableName.TableFull, 10-36
TableName.TableSize, 10-36
TableName.TimeStamp, 10-36

Tables, 2-16
TAN, 10-20
TANH, 10-20
Task, A-8
Task Priority, 9-18
Tasks, 9-18
TCDiff, 10-11
TCP, 10-37, 11-14, 11-19
TCP/IP, 11-15, A-8
TCPClose, 10-38
TCPOpen, 10-38
TCSE, 10-11
TDR100, 10-15, 10-16
Telecommunications, 2-15, 3-8, 11-34, 13-1, 13-3,

15-1
Telecomunications, 8-4
Telnet, 11-19, A-8
Temperature Range, 18-1
Terminal Emulator, 8-11, 11-21
TGA, 10-14
Therm107, 10-14
Therm108, 10-14
Therm109, 10-14
Thermocouple, 2-9, 4-22, 4-23, 4-24, 4-26, 4-27,

4-28, 4-29
Thermocouple Measurement, 10-11
Thermocouple Measurements, 4-21, 4-24, 4-25
Throughput, A-8
Time, 17-13
Time Stamp, B-1
TimeIntoInterval, 10-27
Timer, 10-27
TimerIO, 10-13
TimeUntilTransmit, 10-33
Timing, 4-3
TIMs, 5-3
Tlink, 15-9
Toggle, A-9
Totalize, 10-5
Transducer, 2-1, 3-2, 4-13
Transformer, 3-6, 9-3, 19-9
Transient, 6-1, 19-1, A-3, A-9
Transients, 3-4, 3-11
Transparent Mode, 11-20, 11-21
Tree Map, 14-6
Triggers, 11-34
Trigonometric Functions, 10-18
Trigonometry – Derived Functions, 10-19
TrigVar, 11-34, 11-35
Trim, 10-26
Troubleshooting, 19-1, B-1
Troubleshooting - Modbus, 15-6
Troubleshooting – PakBus Networks, 14-4
Troubleshooting – Power Supply, 19-6
Troubleshooting - Solar Panel, 19-8
True, 9-26

Index to Sections

Index-10

Tutorial, 2-1
Tutorial Exercise, 2-9
TVS, 6-1
TX, C-1
UDP, 10-37
UDPDataGram, 10-38
UDPOpen, 10-38
UINT2, 9-7, 9-9
Units, 10-2
UpperCase, 10-26
UPS, 3-6, 6-1, A-9
User Program, 9-1
USR Drive, B-1
USR Drive Free, B-1
USR:, A-9
VAC, A-9
VaporPressure, 10-22
Variable, A-9
Variable Array, 9-6
Variable Out of Bounds, B-1
Variables, 9-6, 9-23, 10-34
VDC, A-9
Vector, 11-29, 11-30
Vector Processing, 11-28
Vehicle Power, 6-2
Vehicle Power Connection, 6-2
Verify Interval, B-1
Vibrating Wire, 5-4
VibratingWire, 10-13
Viewing Data, 2-16, 2-17
Visual Weather, 16-1
Voice Modem, 10-27
VoiceBeg, EndVoice, 10-27

VoiceHangup, 10-28
VoiceKey, 10-28
VoiceNumber, 10-28
VoicePhrases, 10-28
VoiceSetup, 10-28
VoiceSpeak, 10-28
Volt Meter, A-9
Voltage Measurement, 4-2, 4-26, 10-10
VoltDiff, 10-10
Volts, A-9
VoltSE, 10-11
WaitDigTrig, 10-9
Watch Dog Timer, A-9
Watchdog Errors, B-1
Weather Tight, A-10
Web Page, 10-37
Web Server, 11-15
WebPageBegin / WebPageEnd, 10-3
WebPageBegin … WebPageEnd, 10-38
Wet Bulb, 10-22
WetDryBulb, 10-22
Wheatstone Bridge, 2-6, 4-16
While…Wend, 10-9
Wind Vector, 11-27, 11-29, 11-30
WindVector, 10-5
Wiring, 2-2, 2-9, 3-2
Wiring Panel, 2-2, 2-3, 2-9, 3-2, 4-22, 18-3
WorstCase, 10-36
WriteIO, 10-13
XML, A-10
XOR, 10-18
Y-intercept, 9-21, 9-22
Zero, 11-14

This is a blank page.

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)

PO Box 2450
Somerset West 7129

SOUTH AFRICA
www.csafrica.co.za

cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444

Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)

Rua Luisa Crapsi Orsi, 15 Butantã
CEP: 005543-000 São Paulo SP BRAZIL

www.campbellsci.com.br
suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)

11564 - 149th Street NW
Edmonton, Alberta T5M 1W7

CANADA
www.campbellsci.ca

dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)

Miniparc du Verger - Bat. H
1, rue de Terre Neuve - Les Ulis

91967 COURTABOEUF CEDEX
FRANCE

www.campbellsci.fr
info@campbellsci.fr

Campbell Scientific Spain, S. L.

Psg. Font 14, local 8
08013 Barcelona

SPAIN
www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.

mailto:suporte@campbellsci.com.br

	Revision and Copyright Information

	Warranty and Assistance

	Table of Contents

	Section 1. Introduction
	Section 2. Quickstart Tutorial
	2.1 Primer - CR1000 Data Acquisition
	2.1.1 Components of a Data Acquisition System
	2.1.1.1 Sensors
	2.1.1.2 Datalogger
	2.1.1.3 Data Retrieval

	2.1.2 CR1000 Mounting
	2.1.3
Wiring Panel
	2.1.4 Battery Backup
	2.1.5
Power Supply
	2.1.6 Analog Sensors
	2.1.7 Bridge Sensors
	2.1.8 Pulse Sensors
	2.1.9 Digital I/O Ports
	2.1.10 RS-232 Sensors

	2.2 Hands-on Exercise – Measuring a Thermocouple
	2.2.1 Connections to the CR1000
	2.2.2 PC200W Software
	2.2.2.1 Programming with Short Cut
	2.2.2.2 Connecting to the Datalogger
	2.2.2.3 Synchronizing the Clocks
	2.2.2.4 Sending the Program
	2.2.2.5 Monitoring Data Tables
	2.2.2.6 Collecting Data
	2.2.2.7 Viewing Data

	Section 3. Overview
	3.1 CR1000 Overview
	3.1.1 Sensor Support
	3.1.2 Input / Output Interface: The Wiring Panel
	3.1.2.1 Measurement Inputs
	3.1.2.2 Voltage Outputs
	3.1.2.3 Grounding Terminals
	3.1.2.4 Power Terminals
	3.1.2.5 Communications Ports

	3.1.3 Power Requirements
	3.1.4 Programming: Firmware and User Programs
	3.1.4.1 Firmware: OS and Settings
	3.1.4.2 User Programming

	3.1.5 Memory and Data Storage
	3.1.6 Communications
	3.1.6.1 PakBus
	3.1.6.2 Modbus
	3.1.6.3 DNP3 Communication
	3.1.6.4 Keyboard Display
	3.1.6.4.1 Custom Menus

	3.1.7 Security
	3.1.8 Care and Maintenance
	3.1.8.1 Protection from Water
	3.1.8.2 Protection from Voltage Transients
	3.1.8.3 Calibration
	3.1.8.4 Internal Battery

	3.2 PC Support Software
	3.3 Specifications

	Section 4. Sensor Support
	4.1 Powering Sensors
	4.1.1 Switched Precision (-2500 to +2500 mV)
	4.1.2 Continuous Regulated (5 Volt)
	4.1.3 Continuous Unregulated (Nominal 12 Volt)
	4.1.4 Switched Unregulated (Nominal 12 Volt)

	4.2 Voltage Measurement
	4.2.1 Measurement Sequence
	4.2.2 Voltage Range
	4.2.3 Offset Voltage Compensation
	4.2.3.1 Input and Excitation Reversal (RevDiff, RevEx = True)
	4.2.3.2 Ground Reference Offset Voltage (MeasOff = True)
	4.2.3.3 Background Calibration (RevDiff, RevEx, MeasOff = False)

	4.2.4 Measurements Requiring AC Excitation
	4.2.5 Integration
	4.2.5.1 AC Power Line Noise Rejection
	4.2.5.1.1 AC Noise Rejection on Small Analog Signals
	4.2.5.1.2 AC Noise Rejection on Large Analog Signals

	4.2.6 Signal Settling Time
	4.2.6.1 Minimizing Settling Errors
	4.2.6.2 Measuring the Necessary Settling Time

	4.2.7 Self-Calibration

	4.3 Bridge Resistance Measurements
	4.3.1 Strain Calculations

	4.4 Thermocouple Measurements
	4.4.1 Error Analysis
	4.4.1.1 Panel Temperature
	4.4.1.2 Thermocouple Limits of Error
	4.4.1.3 Accuracy of Thermocouple Voltage Measurement
	4.4.1.4 Noise on Voltage Measurement
	4.4.1.5 Thermocouple Polynomial: Voltage to Temperature
	4.4.1.6 Reference Junction Compensation: Temperature to Voltage
	4.4.1.7 Error Summary
	4.4.1.8 Use of External Reference Junction

	4.5 Pulse Count Measurement
	4.5.1 Pulse Input Channels P1 and P2
	4.5.1.1 High-frequency Pulse
	4.5.1.2 Low-Level AC
	4.5.1.3 Switch Closure

	4.5.2 Digital I/O Ports for Pulse Counting

	4.6 Period Averaging Measurements
	4.7 SDI-12 Measurements
	4.8 RS-232 Measurements
	4.9 Field Calibration of Linear Sensor

	Section 5. Measurement and Control Peripherals
	5.1 Analog Input Expansion
	5.2 Pulse Input Expansion Modules
	5.3 Serial Input Expansion Modules
	5.4 Control Output
	5.4.1 Binary Control
	5.4.1.1 Digital I/O Ports
	5.4.1.2 Switched 12 V Control
	5.4.1.3 Relays and Relay Drivers
	5.4.1.4 Component Built Relays

	5.5 Analog Control / Output Devices
	5.6 Other Peripherals
	5.6.1 TIMs
	5.6.2 Vibrating Wire
	5.6.3 Low-level AC

	Section 6. CR1000 Power Supply
	6.1 Power Requirement
	6.2 Calculating Power Consumption
	6.3 Campbell Scientific Power Supplies
	6.4 Battery Connection
	6.5 Vehicle Power Connections

	Section 7. Grounding
	7.1 ESD Protection
	7.2 Common Mode Range
	7.3 Single-Ended Measurement Reference
	7.4 Ground Potential Differences
	7.4.1 Soil Temperature Thermocouple
	7.4.2 External Signal Conditioner

	7.5 Ground Looping in Ionic Measurements

	Section 8. CR1000 Configuration
	8.1 DevConfig
	8.2 Sending the Operating System
	8.2.1 Sending OS with DevConfig
	8.2.2 Sending OS to Remote CR1000
	8.2.3 Sending OS Using CF Card

	8.3 Settings via DevConfig
	8.3.1 Deployment Tab
	8.3.1.1 Datalogger Sub-Tab
	8.3.1.2 Ports Settings Sub-Tab
	8.3.1.3 Advanced Sub-Tab

	8.3.2 Logger Control Tab

	8.4 Settings via Terminal Emulator

	Section 9. CR1000 Programming
	9.1 Inserting Comments into Program
	9.2 Uploading CR1000 Programs
	9.3 Writing CR1000 Programs
	9.3.1 Short Cut Editor and Program Generator
	9.3.2 CRBASIC Editor
	9.3.3 Transformer

	9.4 Numerical Formats
	9.5 Structure
	9.6 Declarations
	9.6.1 Variables
	9.6.1.1 Arrays
	9.6.1.2 Dimensions
	9.6.1.3 Data Types
	9.6.1.4 Data Type Operational Detail

	9.6.2 Constants
	9.6.3 Flags

	9.7 Data Tables
	9.7.1 Data Tables
	9.7.1.1 DataTable() and EndTable()
	9.7.1.2 DataInterval()
	9.7.1.3 Output Processing Instructions

	9.8 Subroutines
	9.9 Program Timing: Main Scan
	9.10 Program Timing: Slow Sequence Scans
	9.11 Program Execution and Task Priority
	9.11.1 Pipeline Mode
	9.11.2 Sequential Mode

	9.12 Instructions
	9.12.1 Measurement and Data Storage Processing
	9.12.2 Parameter Types
	9.12.3 Names in Parameters
	9.12.4 Expressions in Parameters
	9.12.5 Arrays of Multipliers and Offsets

	9.13 Expressions
	9.13.1 Floating Point Arithmetic
	9.13.2 Mathematical Operations
	9.13.3 Expressions with Numeric Data Types
	9.13.3.1 Boolean from FLOAT or LONG
	9.13.3.2 FLOAT from LONG or Boolean
	9.13.3.3 LONG from FLOAT or Boolean
	9.13.3.4 Integers in Expressions
	9.13.3.5 Constants Conversion

	9.13.4 Logical Expressions
	9.13.5 String Expressions

	9.14 Program Access to Data Tables

	Section 10. CRBASIC Programming Instructions
	10.1 Program Declarations
	10.2 Data Table Declarations
	10.2.1 Data Table Modifiers
	10.2.2 On-Line Data Destinations
	10.2.3 Data Storage Output Processing
	10.2.3.1 Single-Source
	10.2.3.2 Multiple-Source

	10.2.4 Histograms

	10.3 Single Execution at Compile
	10.4 Program Control Instructions
	10.4.1 Common Controls
	10.4.2 Advanced Controls

	10.5 Measurement Instructions
	10.5.1 Diagnostics
	10.5.2 Voltage
	10.5.3 Thermocouples
	10.5.4 Bridge Measurements
	10.5.5 Excitation
	10.5.6 Pulse
	10.5.7 Digital I/O
	10.5.8 SDI-12
	10.5.9 Specific Sensors
	10.5.10 Peripheral Device Support

	10.6 Processing and Math Instructions
	10.6.1 Mathematical Operators
	10.6.2 Logical Operators
	10.6.3 Trigonometric Functions
	10.6.3.1 Derived Functions
	10.6.3.2 Intrinsic Functions

	10.6.4 Arithmetic Functions
	10.6.5 Integrated Processing
	10.6.6 Spatial Processing
	10.6.7 Other Functions

	10.7 String Functions
	10.7.1 String Operations
	10.7.2 String Commands

	10.8 Clock Functions
	10.9 Voice Modem Instructions
	10.10 Custom Keyboard and Display Menus
	10.11 Serial Input / Output
	10.12 Peer-to-Peer PakBus Communications
	10.13 Variable Management
	10.14 File Management
	10.15 Data Table Access and Management
	10.16 Information Services
	10.17 Modem Control
	10.18 SCADA
	10.19 Calibration Functions
	10.20 Satellite Systems Programming
	10.20.1 Argos
	10.20.2 GOES
	10.20.3 OMNISAT
	10.20.4 INMARSAT-C

	Section 11. Programming Resource Library
	11.1 Field Calibration of Linear Sensors (FieldCal)
	11.1.1 CAL Files
	11.1.2 CRBASIC Programming
	11.1.3 Calibration Wizard Overview
	11.1.4 Manual Calibration Overview
	11.1.4.1 Single-point Calibrations (zero or offset)
	11.1.4.2 Two-point Calibrations (multiplier / gain)

	11.1.5 FieldCal() Demonstration Programs
	11.1.5.1 Zero (Option 0)
	11.1.5.2 Offset (Option 1)
	11.1.5.3 Two Point Slope and Offset (Option 2)
	11.1.5.4 Two Point Slope Only (Option 3)

	11.1.6 FieldCalStrain() Demonstration Program
	11.1.6.1 Quarter bridge Shunt (Option 13)
	11.1.6.2 Quarter bridge Zero (Option 10)

	11.2 Information Services
	11.2.1 PakBus Over TCP/IP and Callback
	11.2.2 HTTP Web Server
	11.2.3 FTP Server
	11.2.4 FTP Client
	11.2.5 Telnet
	11.2.6 SNMP
	11.2.7 Ping
	11.2.8 Micro-Serial Server
	11.2.9 Modbus TCP/IP
	11.2.10 DHCP
	11.2.11 DNS
	11.2.12 SMTP

	11.3 SDI-12 Sensor Support
	11.3.1 SDI-12 Transparent Mode
	11.3.2 SDI-12 Command Basics
	11.3.3 Addressing
	11.3.3.1 Address Query Command
	11.3.3.2 Change Address Command
	11.3.3.3 Send Identification Command

	11.3.4 Making Measurements
	11.3.4.1 Start Measurement Command
	11.3.4.2 Start Concurrent Measurement Command
	11.3.4.3 Aborting a Measurement Command

	11.3.5 Obtaining Measurement Values
	11.3.5.1 Send Data Command
	11.3.5.2 Continuous Measurements Command

	11.3.6 SDI-12 Power Considerations

	11.4 Subroutines
	11.5 Wind Vector
	11.5.1 OutputOpt Parameters
	11.5.2 Wind Vector Processing
	11.5.2.1 Measured Raw Data
	11.5.2.2 Calculations

	11.6 CR1000KD Custom Menus
	11.7 Conditional Compilation
	11.8 Serial Input
	11.9 Callback
	11.10 TrigVar and Output Trigger Conditions
	11.11 Programming for Control
	11.12 NSEC Data Type
	11.12.1 NSEC Application
	11.12.2 NSEC Options
	11.12.3 Example NSEC Programming

	Section 12. Memory and Data Storage
	12.1 Internal SRAM
	12.2 CompactFlash® (CF)
	12.3 Memory Drives
	12.3.1 CPU:
	12.3.2 CRD: (CF card memory)
	12.3.3 USR:

	12.4 Memory Conservation
	12.5 Memory Reset
	12.6 File Control
	12.6.1 File Attributes
	12.6.2 CF Power-up

	Section 13. Telecommunications and Data Retrieval
	13.1 Hardware and Carrier Signal
	13.2 Protocols
	13.3 Initiating Telecommunications
	13.4 Data Retrieval
	13.4.1 Via Telecommunications
	13.4.2 Via CF Card
	13.4.3 Data Format on Computer

	Section 14. PakBus Overview
	14.1 PakBus Addresses
	14.2 Nodes: Leaf Nodes and Routers
	14.3 Router and Leaf Node Configuration
	14.4 Linking Nodes: Neighbor Discovery
	14.4.1 Hello-message (two-way exchange)
	14.4.2 Beacon (one-way broadcast)
	14.4.3 Hello-request (one-way broadcast)
	14.4.4 Neighbor Lists
	14.4.5 Adjusting Links
	14.4.6 Maintaining Links

	14.5 Troubleshooting
	14.5.1 Link Integrity
	14.5.2 Ping
	14.5.3 Traffic Flow

	14.6 LoggerNet Device Map Configuration

	Section 15. Alternate Telecoms Resource Library
	15.1 DNP3
	15.2 Modbus
	15.2.1 Overview
	15.2.2 Terminology
	15.2.2.1 Glossary of Terms

	15.2.3 CR1000 Programming for Modbus
	15.2.3.1 Declarations
	15.2.3.2 Datalogger Commands
	15.2.3.3 Addressing (ModbusAddr)
	15.2.3.4 Supported Function Codes (Function)
	15.2.3.5 Reading Inverse Format Registers (MoveBytes)

	15.2.4 Troubleshooting
	15.2.5 Modbus over IP with NL115
	15.2.6 Modbus Slave over IP with NL100
	15.2.6.1 Configuring the NL100
	15.2.6.2 Configuring the CR1000

	Section 16. Support Software
	16.1 Short Cut
	16.2 PC200W
	16.3 Visual Weather
	16.4 PC400
	16.5 LoggerNet Suite
	16.6 PDA Software

	Section 17. CR1000KD: Using the Keyboard Display
	17.1 Data Display
	17.1.1 Real Time Tables
	17.1.2 Real Time Custom
	17.1.3 Final Storage Tables

	17.2 Run/Stop Program
	17.3 File Display
	17.3.1 File: Edit

	17.4 PCCard Display
	17.5 Ports and Status
	17.6 Settings
	17.6.1 Set Time / Date
	17.6.2 PakBus Settings
	17.6.3 Configure Display

	Section 18. Care and Maintenance
	18.1 Temperature Range
	18.2 Moisture Protection
	18.3 Enclosures
	18.4 Replacing the Internal Battery

	Section 19. Troubleshooting
	19.1 Programming
	19.1.1 Debugging Resources
	19.1.2 Program does not Compile
	19.1.3 Program Compiles / Does Not Run Correctly
	19.1.4 NAN and ±INF
	19.1.4.1 Measurements and NAN
	19.1.4.2 Floating Point Math, NAN, and ±INF
	19.1.4.3 Data Types, NAN, and ±INF

	19.2 Communications
	19.2.1 RS-232
	19.2.2 Communicating with Multiple PC Programs

	19.3 Memory Errors
	19.4 Power Supply
	19.4.1 Overview
	19.4.2 Troubleshooting at a Glance
	19.4.3 Diagnosis and Fix Procedures
	19.4.3.1 Battery Voltage Test
	19.4.3.2 Charging Circuit Test — Solar Panel
	19.4.3.3 Charging Circuit Test — Transformer
	19.4.3.4 Adjusting Charging Circuit Voltage

	Appendix A. Glossary
	A.1 Terms
	A.2 Concepts
	A.2.1 Accuracy, Precision, and Resolution

	Appendix B. Status Table
	Appendix C. Serial Port Pin Outs
	C.1 CS I/O Communications Port
	C.2 RS-232 Communications Port

	Appendix D. ASCII Table
	Index to Sections

	Campbell Scientific Contact Information

