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In traditional methods, benchmarking of building energy performance usually takes into consideration of
a wide range of different factors, including floor area, number of occupants, climate condition, energy effi-
ciency of the equipment used, setting of indoor temperature and so on. These different factors are then
given different weights to calculate one general indicator. The indicator is ‘‘general” as it measures only
the overall energy performance of a building. For obtaining more specific information, such as the energy
management effectiveness of a building, this paper proposes an adjustment to the traditional approach
by using data envelopment analysis. Factors related to the evaluation of building energy performance
are divided into scale factors and management factors; the effect of scale factors is then removed to focus
on the performance of management factors that may provide an optional indicator to refine the tradi-
tional focus on energy consumption per unit floor area. Samples under evaluation incorporate 47 govern-
ment office buildings in Taiwan, and floor area and the number of occupants are used as the scale factors
for climate-adjusted building energy consumption after regression analysis. According to the evaluation
focusing on management performance, five evaluated buildings report minimum energy consumption in
different scales and they are rated as 100% for the best management performance. Six buildings receive
the rating of 80–99%, 23 buildings fall under 60% and the poorest reads 31%. The average indicator of
energy performance of all evaluated buildings reads 65%.

� 2008 Published by Elsevier Ltd.
1. Introduction

Constructing an indicator to reveal the performance of building
energy management is important for energy agencies and author-
ities. To evaluate the performance of energy consumption in a
building, there are two major methods: simulation method and
statistical analysis method.

The simulation method sets up a mathematical model to calcu-
late theoretical energy consumption and makes a comparison be-
tween theoretical energy consumption and observed energy
consumption in order to evaluate the performance of energy con-
sumption. Federspiel et al. [1] used numerical software to con-
struct the minimum Energy Usage Intensity (EUI) for laboratories
and compared this with observed EUI of the evaluated building.
Carriere et al. [2] implemented DOE-2 simulation software to study
the energy-saving potential of large buildings. The simulation
method used factors including the properties of building construc-
tion material, the energy efficiency of related energy-consuming
equipment (such as air conditioners and lights, etc.), and the usage
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period to calculate the theoretical energy consumption of the
building.

The statistical analysis consists of collecting the survey data and
comparing one unit with the others. Chung et al. [3] used multiple
regression analysis to build a benchmark table by investigating the
relationship between EUIs and the explanatory factors. Further-
more, Filippin [4] analyzed the energy efficiency and emissions
of greenhouse gases for 15 public school buildings in the central
area of Argentina.

The simulation analysis cannot be commonly used for existing
buildings, due to the difficulty of collecting building data such as
the heat conductivity of walls. Therefore, the statistical method is
generally used for benchmarking the energy consumption of
buildings. However, it is important to note that the statistical
methods give only one single indicator by assigning different
weights of different factors. These methods usually use the value
of adjusted energy consumption per unit area as the indicator
by taking into account of a legion of relative factors, such as scale
factors (like floor area, number of occupants, and climate condi-
tions) and management factors (like energy policy, and energy
efficiency of the equipment used and setting of indoor tempera-
ture). The indicator obtained by above methods is too general to
reveal the influence of management factors on building energy
e performance of building energy management ..., Appl. Therm. Eng
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performance. Therefore, to separate the influence of scale factors
from overall energy efficiency can be helpful for the users to focus
on examining the performance of management. In other words,
factors beyond the control of the management are regarded as
scale factors, such as climate condition and floor area. The energy
consumption of a building is then compared to that of other
buildings with the same or similar scale factors; results of such
a comparison therefore serve as director indicators of manage-
ment efficiency in terms of energy consumption. For example,
comparing energy consumption of different buildings with
same floor area, number of occupants, and climate conditions is
usually a greater reference value to users for improving energy
management efficiency than knowing the energy consumption of
different buildings with different floor area and number of
occupants.

On the other hand, data envelopment analysis (DEA) has been
generally used in the performance evaluation for resource usage.
DEA could be applied to measure the overall energy efficiency in
details by examining scale factors and management factors. Over-
all efficiency compared on the basis of same scale factors is called
pure technical efficiency while scale efficiency refers to the differ-
ence in efficiency caused by comparisons based on different scale
factors. Chauhan et al. [5] used DEA approach to determine the effi-
ciencies of farmers with regard to energy use in rice production
activities. The study has helped to segregate efficient farmers from
inefficient ones, identify wasteful uses of energy from different
sources by inefficient farmers and to suggest reasonable savings
in energy uses from different sources. The results showed that,
on an average, about 11.6% of the total input energy could be saved
if the farmers follow the input package recommended by the study.
Hu and Kao [6] used DEA to find the energy-saving target for APEC
economies without reducing their maximum potential gross
domestic productions in each year. The major finding is that China
has the largest energy-saving target up to almost half of its current
usage. Önüt and Soner [7] used DEA to evaluate the energy effi-
ciency in 32 five-star hotels, and the results showed that eight ho-
tels are efficient and 24 hotels are inefficient.

Using data envelopment analysis as the research tool and gov-
ernment office buildings in Taiwan as a case study, the paper first
calculates the climate-adjusted building energy consumption and
then the effect of scale factors is examined and removed to concen-
trate on the performance of management.
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2. Methods

After the collection of relevant data of the evaluated units, the
benchmarking process takes place and is composed of three steps:
first, a regression analysis is used to calculate the regression factors
of climate factors and the climate-adjusted building energy con-
sumption. Then, the DEA utilizes the floor area and the number
of occupants as the scale factors, and the climate-adjusted energy
consumption is used as the input to calculate overall energy effi-
ciency. Finally, DEA is further applied to measure the overall en-
ergy efficiency in details by examining scale factors and
management factors.
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Fig. 1. Comparison of data envelopment analysis and regression analysis [5].
2.1. Regression model

We first use the regression analysis to calculate the regression
coefficients of significant factors that affect the energy usage of
buildings. The investigated independent variables include build-
ings’ usage information, such as floor area and number of occu-
pants, and climate conditions, such as dry bulb temperature,
hours of rain, and irradiation amount. The typical regression model
is as follows [3]:
Please cite this article in press as: W.-S. Lee, K.-P. Lee, Benchmarking th
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Eusage ¼ aþ b1x1 þ b2x2 þ � � � þ bkxk; ð1Þ

where Eusage is the energy consumption of building; a is the inter-
cept; b1; b2; . . . ; bk are the regression coefficients; x1; x2; . . . ; xk are
the significant independent variables.

After establishing the regression coefficients of climate factors,
the climate-adjusted building energy consumption is calculated
by adjusting the climate condition to the average values of the
evaluated buildings.

2.2. Data envelopment analysis

DEA is known as a mathematical procedure that uses a linear
programming technique to assess the efficiencies of decision-mak-
ing units (DMU). A non-parametric piecewise frontier, which owns
the optimal efficiency over the datasets, is composed of DMUs and
is constructed by DEA for a comparative efficiency measurement.
Those DMUs that are located at the efficiency frontier are efficient
DMUs. These DMUs own the best efficiency among all DMUs and
have their maximum outputs generated among all DMUs by taking
the minimum level of inputs.

The concepts used in the parametric and DEA approaches are
demonstrated in Fig. 1 where the case of seven DMUs with single
inputs and single outputs is considered [5]. The input and output
are shown on the x and y axes, respectively. The filled rhombuses
represent different DMUs in the data set. In Fig. 1, P1, P2, P3 and
P4 are the boundary points. The solid line joining these points
forms the envelope for the data set. The DMUs lying on the bound-
ary and represented by points P1, P2, P3 and P4 are considered as
efficient DMUs, and the efficiency of other DMUS, P5, P6 and P7 are
calculated by comparing with these efficient DMUs.

A unit can be made efficient either by reducing the input levels
and getting the same output (input orientation) or by increasing
the output level with the same input level (output orientation).
The input oriented analysis is becoming more common in DEA
applications because profitability depends on the efficiency of the
operations. In this paper, we adopt an input oriented DEA approach
for efficiency estimation.

DEA has two models: constant returns to scale (CRS) DEA model
(Charnes et al. [8]) and variable returns to scale (VRS) DEA model
(Banker et al. [9]). The CRS model finds each DMU’s overall effi-
ciency. The VRS model decomposes overall efficiency into pure
technical efficiency and scale efficiency. Overall efficiency is basi-
cally a measure by which DMUs are evaluated for their perfor-
mance relative to other DMUs. However, its value is influenced
by scale efficiency, which quantifies the effect of the presence of
variable returns to scale in the DMUs. Thus, pure technical effi-
ciency is overall efficiency that has the effect of scale efficiency re-
moved [5].
e performance of building energy management ..., Appl. Therm. Eng
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The concepts of DEA are illustrated in detail by Chauhan et al.
[5] while those concepts adopted by the paper are outlined as fol-
lows. As shown in Fig. 2, the line MN represents the envelope of the
data set with constant returns to scale. It is a straight line that
passes through the origin and the extreme data points. The seg-
ment formed by P1, P2, P3 and P4 represent the envelope of the
data set with variable returns to scale. The DMU lining on the line
MN is consider as efficient and has an overall efficiency equaling to
one; the DMU lining on the segment formed by P1, P2, P3 and P4
has a pure technical efficient equaling to one. Let us consider
DMU P6 in Fig. 2. Its input and output are given by AD and MA,
respectively. B and C are the points of intersection of the line AD
with the line MN and the line segment of the envelope of the data
set. One can interpret that AB is the ideal input required to produce
the output B on MN, if constant returns to scale were to prevail.
However, considering variable returns to scale to be a realistic phe-
nomenon, one can relax the input requirement to be equal to AC to
be able to produce the output B on MN. One can now define the
various efficiencies as follows [5]:

Overall efficiency = AB/AD
Scale efficiency = AB/AC
Pure technical efficiency = AC/AD.

The relationship among these forms of efficiency is given as [5]

Overall efficiency ¼ ½Pure technical efficiency� � ½scale efficiency�:

It is easy to graph and visualize the case of DMUs having single in-
puts and single outputs. The measurement of pure technical effi-
ciency, where there are multiple and incommensurate inputs and
outputs, was first addressed by Farrell [10] and developed by Farrell
and Fieldhouse [11]. It focuses on the concept of a hypothetically
efficient DMU, defined as a weighted average of efficient DMUs, to
act as a comparator for an inefficient DMU. This hypothetically effi-
cient DMU is known as a virtual DMU and acts as a benchmark for
an inefficient DMU. A common measure of efficiency is Effi-
ciency=Weighted sum of outputs/Weighted sum of inputs.

Using standard notations, the efficiency can be written as
Efficiency:

Efficiency ¼ u1yj�

1 þ u2yj�

2 þ � � � þ uNyj�

N

v1xj�

1 þ v2xj�

2 þ � � � þ vMxj�

M

; ð2Þ

where u1;u2; . . . are the weight given to output nðn ¼ 1;2; . . . ;NÞ;
yj�

1 ; yj�

2 ; . . . ; yj�

N are the amount of output nðn ¼ 1;2; . . . ;NÞ of DMU
j�; v1; v2; . . . are the weight given to input mðm ¼ 1;2; . . . ;MÞ;
xj�

1 ; xj�

2 ; . . . ; xj�

M are the amount of input mðm ¼ 1;2; . . . ;MÞ to DMU
j�; and j� is the DMU under consideration. The efficiency is usually
constrained to be between zero and one. Here, the measure of effi-
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Fig. 2. Relation of input and output from DEA [5].
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ciency requires a common set of weights to be applied across all
DMUs. This immediately raises the problem of how an agreed com-
mon set of weights can be obtained.

In 1978, Charnes et al. [8] proposed that each DMU should be
allowed to select a set of weights that shows it in the most favor-
able situation during comparison with other DMUs. Under these
circumstances, the optimal weights assigned to the different inputs
and outputs by a target DMU j� and the efficiency of the unit can be
calculated as a solution to the following problem:

Maximize efficiency of DMU j�,
subject to efficiency of all other DMU 6 1.
The algebraic model of the formulation is as follows [5]:
XN XM
,

max f j� ¼
n¼1

unyj�

n
m¼1

vmxj�

m

s:t: ðiÞ
XN

n¼1

unyj
n

XM

m¼1

vmxj
m 6 1

,
for all j ¼ 1; . . . ; J;

ðiiÞ un P 0; vm P 0 for all n ¼ 1; . . . ;N and m ¼ 1; . . . ;M;

ð3Þ

where f j� is the overall efficiency of the DMU under consideration; N
the total number of outputs; M the total number of inputs; un the
coefficient of the nth output ðn ¼ 1; . . . ;NÞ; and vm the coefficient
of the mth input ðm ¼ 1; . . . ;MÞ. These un and vm are the variables
of the problem and are constrained to be greater than zero in order
to avoid any input or output being totally ignored during the pro-
cess of determining efficiencies. If the solution of the above model
ðf j� Þ gives a value equal to one, the DMU j� is said to be efficient.

The above model (3) is a fractional linear programming prob-
lem. A method to solve this model is to convert it into a linear form
so that the procedure to solve a linear programming problem can
be applied. In 1978, Charnes et al. [8] converted the above problem
(3) to a set of linear programming problems. During the process of
maximizing the ratio, the relative magnitudes of the numerator
and denominator are of interest and not their individual values.
The conversion into a linear programming problem can be
achieved by setting the denominator equal to a constant and max-
imizing the numerator.

The resultant linear programming formulation is as follows [5]:
Find the maximum efficiency for DMU j* subject to

(i) Max efficiency 61,
(ii) sum of weighted inputs is unity for each DMU, j ¼ 1;2; . . . ; J.

Using mathematical notations, the above can be written as

max f j� ¼
XN

n¼1

unyj�

n

s:t: ðiÞ
XN

n¼1

unyj
n �

XM

m¼1

vmxj
m 6 0

ðiiÞ
XM

m¼1

vmxj�

m ¼ 1 for all j ¼ 1;2; . . . ; J;

ðiiiÞ un P 0; vm P 0 for all n ¼ 1;2; . . . ;N

and m ¼ 1;2; . . . ;M;

ð4Þ

The model (4) is popularly known as the CCR model (after the names
of its developers, Charnes, Cooper and Rhodes). This is a linear pro-
gramming model. The above model depicts the optimization under
constant returns to scale (CRS) conditions. This condition usually
does not exist in most real life problems. To tackle the problem of
variable returns to scale (VRS), Banker et al. [9] developed the model
(commonly known as the BCC model after the names of its develop-
ers, Banker, Charnes and Cooper). In mathematical terms, the input
oriented BCC model can be described as follows [5]:
e performance of building energy management ..., Appl. Therm. Eng
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min h

s:t: yj� � Yk 6 0;

hxj� � Xk P 0;
ek ¼ 1; kj 2 ½0;1�;

ð5Þ

where kj is the intensity vector corresponding to the jth DMU, e the
row vector with all elements equal to one, and hj� the solution of the
formulation. These models estimate the efficiency in converting the
inputs to outputs by constructing an empirically based production
frontier and evaluating each unit against all other units included
in the analysis. The unit j� is overall efficient if the value of the
objective function ðhÞ is one. This means that it is not possible to re-
duce its inputs further at the present level of yield (output).

3. Case study

In this paper, we analyze 47 government office buildings on Au-
gust and September in Taiwan. Taiwan is an island located be-
tween 120� and 122� of east longitude, 22–25� of north latitude.
The floor area and the occupants of the evaluated units are pro-
vided by their energy manager. Because the electricity is the only
energy used in these government office buildings, the electricity
usage is the only energy measurement factor and the data is pro-
vided from the power utility. The weather conditions, such as out-
door temperature and hours of rain, are provided from 10 climate
measurement stations of the Central Weather Bureau. The main
data information is shown in Table 1.

4. Results and discussion

4.1. The climate-adjusted energy consumption

After statistical analysis and using energy usage per floor area
as the dependent variable, we find that floor area, number of occu-
pants, outdoor temperature and hours of rain as independent vari-
ables could build a regression model in which R2 is bigger than 0.8
(t statistics in small parentheses). The regression model is

y ¼ �1407160:8
ð�2:5Þ

þ8:2
ð6:1Þ
�Aþ 628:2

ð5:1Þ
�P

þ 44334:5
ð2:5Þ

�T þ 3147:8
ð2:9Þ

�R; ð6Þ

where R2 = 0.84. Here, y is the total energy consumption in August
and September (kW h/2 month), P is the number of occupants, T is
the average outdoor temperature (degrees centigrade) during office
hours, and R represents the average hours of rain per month (hours/
month) during office hours.

The energy consumption of building is composed of energy con-
sumption of air-conditioning, lighting, and office equipment. When
Table 1
The main data information of 47 government office buildings at office time in August
and September in Taiwan

Energy
consumption
(kW h/
2 month)

Floor
area
(m2)

Number
of
occupants

Average
outdoor
temperature
(�C)

Average
hours of rain
(h/month)a

Average
value

95113.6 5215.9 107.4 29.8 22.4

Standard
deviation

80649.0 4828.3 58.2 0.5 8.0

Maximum
value

398880.0 25998.0 309.0 30.3 35.5

Minimum
value

19742.0 778.5 37.0 28.7 11.0

a Accumulated precipitation more than 0.1 mm/h.
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it rains, the outdoor air will have a high enthalpy because the rel-
ative humidity is about 100%. Because indoor air quality must be
maintained at a constant condition, air-conditioning systems have
to consume more energy when processing outside air with high
enthalpy. This will increase the energy consumption. Therefore,
the hours of rain are used as an independent parameter of above
regression equation.

After establishing the regression coefficients of climate factors,
the climate-adjusted building energy consumption is calculated
by adjusting the climate condition to the average values of the
evaluated buildings.

4.2. Evaluate the energy performance of office buildings

For influencing the energy consumption of office buildings, the
floor area, number of occupants and climate conditions are three
major factors that energy managers cannot control, as show in
Eq. (6). When climate-adjusted energy consumption is adopted
as the input and the floor area and number of occupant are consid-
ered as scale factors for DEA analysis, the pure technical efficiency
of buildings can represent the efficiency obtained after comparing
the energy consumption of buildings with the same floor area,
number of occupants, and climate conditions. In other words, the
pure technical efficiency represents the management efficiency
excluding the factors that the manager cannot control.

The data envelopment analysis performed in the case study in-
cludes two scale factors (floor area and number of occupants) and
one input item (climate-adjusted energy consumption) as illus-
trated in Fig. 3. C and K represent two evaluated units same in scale
conditions (floor area and number of occupants) but different in in-
put item (energy consumption, indicated respectively as R and S).
Under the same scale conditions, C reports the lowest energy con-
sumption, and its pure technical efficiency is rated as 100%. The
line RS or KC presents the potential of energy conservation, redun-
dant energy consumption, of evaluated unit K. The pure technical
efficiency of K, on the other hand, is the ratio of line OR to line
OS. The higher value of pure technical efficiency means the evalu-
ated unit has smaller ratio of energy conservation. Thus, the pure
technical efficiency could represent the performance of energy
management in the same output scales.

The overall energy efficiency of a building is influenced by scale
factors and management factors, and the overall energy efficiency
can be divided into scale efficiency and pure technical efficiency.
Therefore, the pure technical efficiency calculated by comparing
Fig. 3. Illustration of data envelopment analysis with one input item and two scale
factors.

e performance of building energy management ..., Appl. Therm. Eng
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climate-adjusted energy consumption under the same scale can be
expected to represent the effect of management performance.

The pure technical efficiency emerging from data envelopment
analysis serves as the indicator of management performance of
evaluated buildings. As indicated in Figs. 4, 5 of the evaluated build-
ings are rated as 100% for best energy performance. Six buildings re-
ceive a rating falling in the range of 80–99%, 21 buildings in the
range of 40–60%, and two buildings under 40%. The average indica-
tor of energy performance of all evaluated buildings reads 65%.

As indicated by Figs. 5 and 6 that outline the relationships
among overall efficiency, pure technical efficiency and scale effi-
ciency, most of the evaluated buildings with an overall efficiency
lower than 60% betray a pure technical efficiency below 80%. More-
over, the pure technical efficiency shows a trend of declining with
the overall efficiency. The scale efficiency of these evaluated build-
ings falls mostly in the range of 70–100%. It can therefore be in-
ferred that the reason of poor energy efficiency lies mainly in
ineffective energy management. The pure technical efficiency is
improved as scale efficiency declines, as shown in Fig. 7. This
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may mean that buildings with a poorer scale usually have better
energy management.

5. Conclusion

This paper using data envelopment analysis divides the overall
energy efficiency into scale factors and management factors and
then has the effect of scale factors removed to focus on the perfor-
mance of management factors that may provide an optional indica-
tor to refine the traditional focus on energy consumption per unit
floor area. Samples under evaluation incorporate 47 government
office buildings in Taiwan, and floor area and the number of occu-
pants are used as scale factors for climate-adjusted building energy
consumption after regression analysis. According to the evaluation
focusing on management performance, five evaluated buildings re-
port minimum energy consumption in different scales and they are
rated as 100% for the best management performance. Six buildings
receive the rating of 80–99%, 23 buildings fall under 60% and the
poorest reads 31%. The average indicator of energy performance
of all evaluated buildings reads 65%.
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