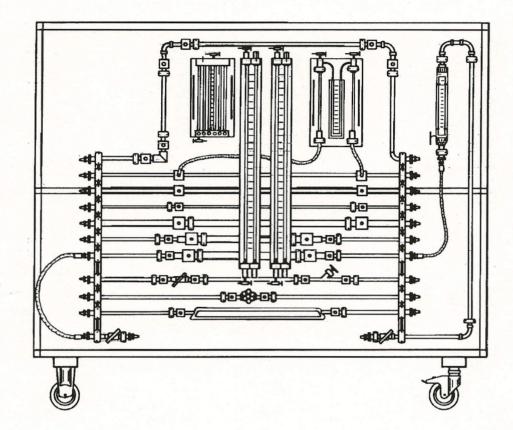
SYSTEME FÜR DIE TECHNISCHE AUSBILDUNG EQUIPMENT FOR ENGINEERING EDUCATION

Instruction Manual

HM 120 Pipe Fitting Loss Demo Panel

Visit our website! www.gunt.de


Ī

Ĵ

٥

HM 120 Mobile Panel for Investigating Pipe Systems

Instruction Manual

Publication No.: 917.000 00A 120 12

6/93

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

-

Π

Π

Table of Contents

1	Ir	ntroduction 1							
2	U	nit des	scription	2					
	2.1	.1 Layout of the test stand 3							
	2.2	Functio	on of the test stand	. 4					
	2.3	Techni	ical data	. 5					
3	P	erform	ing out the experiment	7					
	3.1	Comm	issioning	. 7					
	3.2	Dual m	nanometer	. 7					
		3.2.1	Measuring differential pressure	8					
		3.2.2	Measuring absolute pressure	. 9					
	3.3	Conne	cting and operating the manometer	10					
		3.3.1	Venting	10					
		3.3.2	Setting the zero position	11					
		3.3.3	Performing the measurement	12					
		3.3.4	Concluding the measurement	12					
	3.4	U-tube	manometer	13					
		3.4.1	Safety instructions for the mercury manometer	13					
		3.4.2	Venting	14					
		3.4.3	Concluding the measurement	14					
	3.5	6-tube	manometer panel	15					
	3.6	Flow m	neasurement	15					
	3.7	Overvie	ew of pipe sections	16					

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Π

Π

1

1

1

-

	Mobile Panel for Investigating Pipe Systems
4	Experiments 17
4.1	Pipe flow with friction174.1.1Basic principles174.1.2Performing the experiment204.1.3Comparison with the equation24Coefficients of resistance of special pipeline elements25
5.1 5.2 5.3 5.4	Basic principles25Pipe bends275.2.1Performing the experiment285.2.2Calculating the coefficients of resistance30Changes in cross-sectional area315.3.1Performing the experiment325.3.2Evaluation of the experiment33Shut-off devices355.4.1Performing the experiment365.4.2Calculating the coefficients of resistance38
6 (6.1 6.2	Opening characteristics of shut-off devices 39 Performing the experiment
7 7.1	Appendix42Tables and diagrams427.1.1Wall roughness427.1.2Kinematic viscosity427.1.3Diagrams43

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

7.2	Formu	lae	45
7.3	Work s	sheets	46
	7.3.1	Work sheet 1: Measurement results	46
	7.3.2	Work sheet 2: Calculation model for pipe friction	47
	7.3.3	Work sheet 3: Calculation model for coefficients of resistance	48
Ir	ndex		49

8

Л

П

Π

Introduction

1

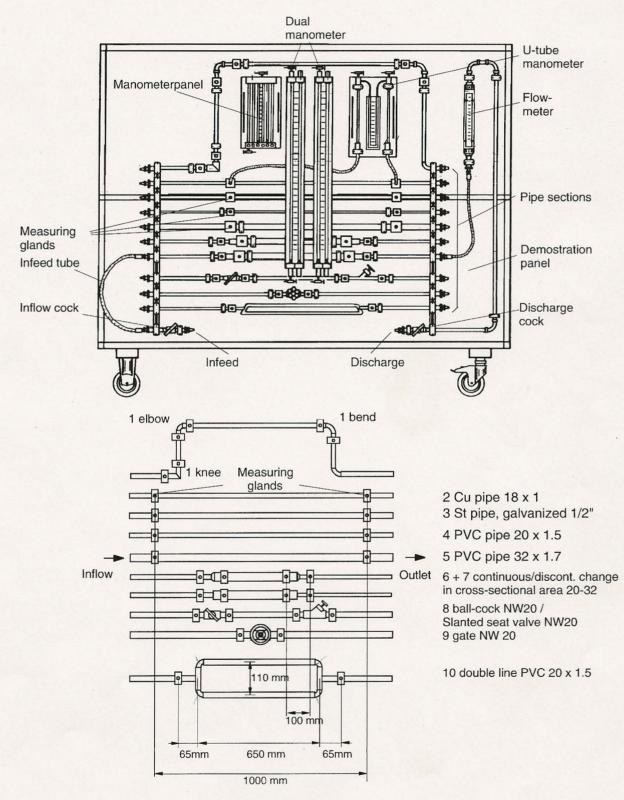
The HM120 demonstration panel for investigating pipe systems enables experimental examination of system losses in pipes and special pipeline elements. The following individual topics can be explored using the test bench:

- Influence of different pipe diameters
- Influence of different materials and degrees of surface roughness
- Influence of flow velocity
- Losses due to pipe bends and elbows
- Losses due to changes in cross-sectional area
- Losses due to shut-off devices
- Determining coefficients of resistance and loss levels
- Measuring opening characteristics in valves and gates
- Comparison between experiments and calculations
- Observing the influence of defects

Furthermore, the student acquires general skills in the preparation and implementation of series of experiments and experience of handling pressure and flow measuring equipment. Work sheets have been developed in accordance with these experiment instructions which facilitate methodical evaluation of the experiments.

In connection with the set of pumps HM120.1, the demonstration panel is independent of the water main, and can therefore be used in a variety of locations such as training, seminar and lecture rooms.

Unit description


2

The HM120 demonstration panel contains a fully fitted test stand for measuring losses in pipelines. The demonstration panel is distinguished by the following features:

- The entire layout of the experiment is clearly arranged on an **upright panel**.
- Mobility and easy manoeuvering of the demonstration panel thanks to four castors
- The dimensions allow it to be rolled through conventional doorways
- Two braked castors ensure stability
- By using the set of pumps HM 120.1, the system can be operated independently of the water main
- Flow measurement via variable-area flowmeters
- 4 independent pressure measuring systems for measuring differential pressure and loss level
- Trouble-free **pressure tapping** via annular chambers
- Quick, easy connection between measuring points and pressure gauges via tubes with rapid action hose couplings
- 10 different pipe sections permanently installed
- Pipe sections are **interchangeable**, enabling the use of individual pipe sections
- Straightforward **selection of pipe sections** via tubes with rapid action hose couplings
- Standardised **measuring length 1m** for measuring pipe friction

2.1 Layout of the test stand

Arrangement of pipe sections

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

1

2.2 Function of the test stand

Following infeed, the water first passes the inflow _ cock. This blocks the water supply when the tubes are switched over.

The water is then directed to the selected pipe section via the infeed tube.

Pressure is measured at measuring glands at the beginning and end of the measuring section.

After passing through the pipe section, the water is fed to the flowmeter via a second tube.

The flow can be halted via a cock in the discharge.

HM 120 Mobile Panel for Pipe Systems	r Investigating		
2.3 Technical data			
Main dimensions of the test stand			
	Length Width Height Weight	2250 600 1800 85	mm mm kg
Flow measurement			
	Variable-area flowmeter Percentual scale max. flow rate (100%)	1600	l/h
Pressure measurement			
	Dual manometer Filling Absolute and differentia measurement Measuring range	Water I pressure 850	mm of water
	U-tube manometer Filling Absolute and differentia measurement Measuring range	Mercury I pressure -200 200	mbar
		-2000 2000	mm of water
	6-tube manometer panel Filling Absolute and differentia measurement	Water I pressure	
	Measuring range	300	mm of water

ſ

1

Π

-

1

1

1

1

Π

N

 $\widehat{}$

Π

Π

1

Π

1

ſ

XT

Pipe sections

Pipe section with knee, bend and elbow, 20 x 1.5, PVC

Pipe section, straight, 18 x 1, Cu, 1000 mm long

Pipe section, straight, 1/2", St, galvanized, 1000 mm long

Pipe section, straight, 20 x 1.5, PVC, 1000 mm long

Pipe section, straight, 32 x 1.7, PVC, 1000 mm long

Pipe section, continuously expanded and tapered, 20 x 1.5 to 32 x 1.7, PVC

Pipe section, discontinuously expanded and tapered, 20 x 1.5 to 32 x 1.7, PVC

Pipe section with ball-cock NW 20 and slanted seat valve NW 20

Pipe section with gate NW 20

Pipe section with double line 20 x 1.5, PVC

- 3 Performing out the experiment
- 3.1 Commissioning

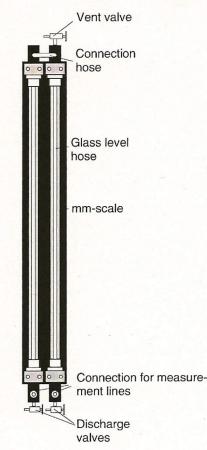
Set up the test stand and lock the brakes to prevent it from rolling away.

- Choose an even, waterproof surface (water may escape when changing the connection tubes)
- Connect the infeed connection to the water main
- Connect the discharge to a suitable drain

Check the test stand for leaks

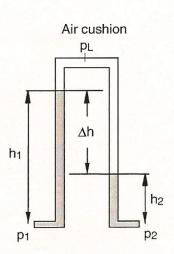
- Seal the measuring glands with dummy plugs
- Connect the pipe section to the infeed tube
- Connect the pipe section to the discharge tube
- Open the outlet cock
- Slowly open the inflow cock and vent the pipe section
- Close the outlet cock. The pipe system is now under full pressure from the water main
- Check all pipes and connections for leaks
- Repeat this procedure for all pipe sections

Dual manometer


3.2

The dual manometer enables both differential pressure and absolute pressure (where it is necessary to make allowance for atmospheric air pressure) to be measured in mm of water.

HM 120



The measuring range is 0 - 850 mm of water

- The manometer consists of two glass level tubes with a metal mm scale behind them.
- Both level tubes are connected to one another at the top and have a common vent valve.
- Differential pressure is measured with the vent valve closed, and absolute pressure (in relation to air pressure) with the vent valve open.
- The measuring points are connected to the lower ends of the level pipes with rapid action hose couplings.
- Each level pipe has a discharge valve at its bottom end.

3.2.1 Measuring differential pressure

For this purpose, the vent valve is closed. A cushion of air with pressure pL is created above the two columns of water. This produces the following equation for the pressures to be measured, p1 and p2

 $p_1 = p_1 + h_1 \rho g$,

$$\mathsf{p}_2 = \mathsf{p}_\mathsf{L} + \mathsf{h}_2 \, \rho \, \mathsf{g} \, .$$

The differential pressure is then

 $\Delta p = p_1 - p_2 = p_1 + h_1 \rho g - p_1 - h_2 \rho g.$

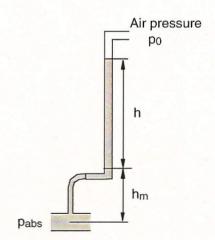
The pressure pL is extracted, producing

 $\Delta p = \Delta h \rho g$ with $\Delta h = h_1 - h_2$.

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

The zero point for differential pressure measurement can be set via the pressure p_{L} .

For a maximum measuring span, it is expedient to position the zero point or mid-point $\frac{h_1 + h_2}{2}$ at the centre of the measuring scale $\frac{h_{max}}{2}$


$$\frac{h_1 + h_2}{2} = \frac{h_{max}}{2} = \frac{p_1 - p_L + p_2 - p_L}{2 \rho g}$$

This produces the following equation for the pressure of the air cushion

$$p_{\rm L} = \frac{p_1 + p_2 - h_{\rm max} \,\rho \,g}{2} \,.$$

The pressure is set via the vent valve; please also refer to section 3.3.2.

3.2.2 Measuring absolute pressure

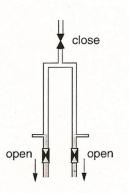
For measuring absolute pressure, the vent valve is open and the pressure p_L refers to the atmospheric air pressure p_0 .

In this case, it is also necessary to consider the height h_m between the measuring point and the zero point of the manometer

 $p_{abs} = p_0 + (h + h_m) \rho g$.

Π

Π



3.3 Connecting and operating the manometer

- Close the inflow to the pipe section
- Open the discharge from the pipe section
- Connect the manometer to the pipe section to be measured using the connection tubes

IMPORTANT! Seal all other measuring glands in the pipe section with dummy plugs.

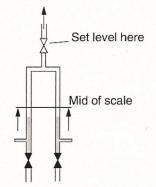
3.3.1 Venting

close

simultaneously

- Close the vent valve at the top
- Open both discharge valves at the bottom

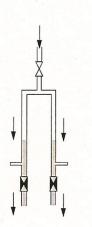
- Slowly open the inflow cock to the pipe section The pipe section and connection tubes are vented by the powerful water flow.

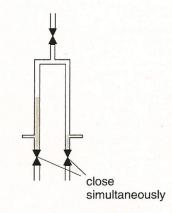

When there are no further air bubbles in the connection tubes:

- Close the discharge from the pipe section
- Slowly close both discharge valves at the bottom simultaneously. Take care to ensure that both water columns rise evenly and there is no overflowing between the level tubes

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

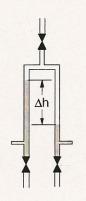
3.3.2 Setting the zero position




In order to guarantee the maximum possible measuring span, the zero position of the manometer should be situated in the centre of the scale.

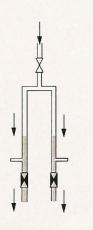
- Close the discharge from the pipe section; the flow rate is zero.
- The level is equal in both measuring tubes
- Carefully set the level to the centre of the scale using the vent valve.

IMPORTANT! The level can only be adjusted upwards with the vent valve. If the level is too high, it can be lowered again as follows:


- Close the inflow to the pipe section
- Open the discharge from the pipe section
- Open the vent valve at the top and the two discharge valves at the bottom. The manometer will empty
- Close the vent valve at the top
- Open the inflow to the pipe section
- Simultaneously close both discharge valves at the bottom
- Set the level to the centre of the scale as described above.

3.3.3 Performing the measurement

Regulate the required flow rate using the discharge cock. The inflow to the pipe section should be completely open. Check on the flowmeter.

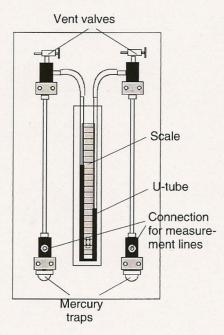

Read the differential pressure as the difference in height between the two water columns.

If the display fluctuates, estimate the average value. With differential pressure measurements, reproducible readings are more important than absolute precision.

IMPORTANT! With a large flow rate, the differential pressure may rise to such an extent that water overflows into the measuring tube with the lower pressure via the upper connection hose. If necessary, the zero position should be re-set (see 3.3.2) or the mercury U-tube manometer with the larger measuring range should be used.

Differential pressure measurement is always performed with the vent valve closed.

3.3.4 Concluding the measurement


- Once the measurement is complete, close the inflow to the pipe section
- Open the discharge from the pipe section
- Open the vent valve and both discharge valves.

The manometer will empty and the pipe section will be pressureless.

The connection tubes can now be disconnected and changed over.

3.4 U-tube manometer

If the differential pressure to be measured exceeds the measuring range of the dual manometer with water filling, the mercury U-tube manometer may be used instead.

The U-tube manometer has a measuring range of \pm 200 mbar, corresponding to 4000 mm of water.

It is also possible to measure absolute pressure with this manometer by opening one of the vent valves.

A sliding scale enables the display to be set precisely to zero.

3.4.1 Safety instructions for the mercury manometer

IMPORTANT! As the manometer is filled with **mercury**, particular caution should be exercised when handling it.

- It is essential to prevent the poisonous mercury from escaping. For this reason, **never exceed the maximum differential pressure of 400 mbar**.
- Similarly, **never close the inflow abruptly**, since the flow energy of the discharging water could cause such a vacuum that the mercury is sucked out of the manometer.
- For safety reasons, there are valve floats on the surface of the mercury which seal the connection hoses if the mercury level is too high.
- Furthermore, so-called **mercury traps** are built into the connections which largely prevent mercury from escaping into the water cycle.

- Particular caution is required during installation and transportation. The filled U-tube manometer should always be stored in an upright position.
- Should mercury escape in spite of this, the relevant safety instructions on handling mercury should be observed.

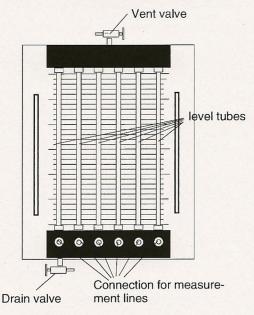
3.4.2 Venting

Connect the manometer as described under 3.2.

- Open both vent valves on the manometer
- Carefully open the inflow cock on the pipe section to be measured
- Once no further air bubbles are visible in the pipes, close both vent valves simultaneously

Measurement is performed as described under 3.3.3.

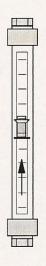
3.4.3 Concluding the measurement

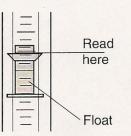

- Once measurement is complete, close the inflow to the pipe section
- Open the discharge from the pipe section
- Open the vent valves on the manometer

The manometer and the connection tubes will empty and the pipe section will be pressureless.

The connection tubes can now be released and changed.

3.5 6-tube manometer panel




The 6-tube manometer panel consists of 6 glass level tubes with a mm scale behind them.

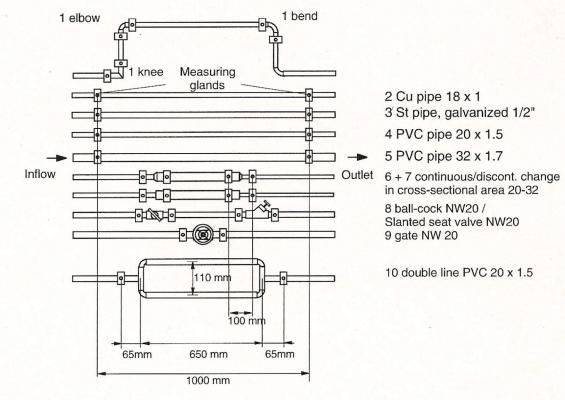
- The measuring range is 300 mm of water
- All level tubes are connected to one another at the top and have a common vent valve.
- Differential pressure is measured with the vent valve closed, and absolute pressure with the vent valve open.

Functioning, connection and operation are analogous to the two manometers described above in sections 3.2 and 3.4.

3.6 Flow measurement

A variable-area flowmeter with the following characteristics is used to measure flow rate.

- Plastic measuring tube
- Interchangeable stainless steel float
- Interchangeable percentual scale
- Max. flow rate (100%) 1900 l/h


The flow rate can be read from the upper edge of the conical attachment.

Air bubbles or dirt particles on the float may affect measurement precision.

To flush them out, operate the test stand at maximum flow rate. To do so, open all cocks fully.

3.7 Overview of pipe sections

Arrangement of pipe sections

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Experiments

4

The following sections 4, 5 and 6 describe examples of experiments which can be implemented with this device. The selection of experiments does not claim to be exhaustive, but should instead provide ideas for devising your own series of experiments.

The descriptions of experiments are divided into a section on **basic principles** containing the main formulae, the section on actually **performing the experiment**, including recording measurements, and the **comparison between calculations and experiments**.

The measurements listed should not be viewed as guideline or calibration values which must be adhered to in all circumstances. Deviations may occur to a greater or larger extent in your own experiments, depending on the design of the individual components and the skill of the individual performing the experiment.

4.1 Pipe flow with friction

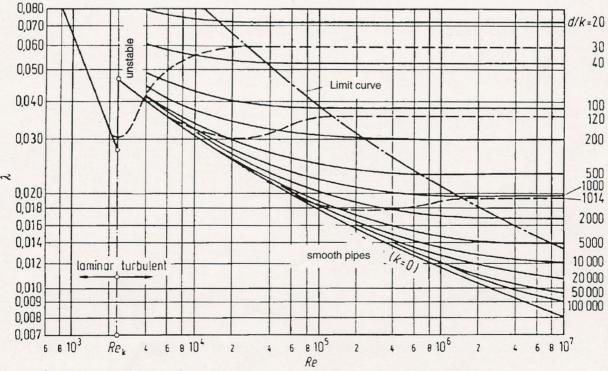
4.1.1 Basic principles

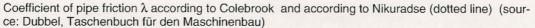
The following experiments are intended to determine the **pressure loss** p_v and/or the **loss level** h_v in pipe flow hampered by friction.

With **turbulent pipe flow**, which is defined as a Reynolds' number Re>2320, pressure loss is proportional to

- The length 1 of pipe
- Coefficient of pipe friction λ
- Density ρ of the flow medium
- Square of the flow velocity v.

Furthermore, pressure loss increases as the pipe diameter d decreases.


It is calculated as follows


$$p_v = \frac{\lambda /}{2 d} \rho v^2.$$

The relevant loss level h_v is calculated as follows

$$h_v = \frac{\lambda /}{d} \frac{v^2}{2g}$$

In the case of turbulent pipe flow (Re>2320), the coefficient of pipe friction λ depends on the pipe roughness k and the Reynolds' number Re. Pipe roughness k indicates the height of the wall elevations in mm. The roughness of the experimental pipes is listed in the Appendix in Table 7.1.1. The correlation between Re, λ and k is portrayed in the diagram according to **Colebrook and Nikuradse**, which relates wall roughness k to the pipe diameter d.

The **Reynolds' number Re** is calculated from the pipe diameter d, flow velocity v and kinematic viscosity v

$$\operatorname{Re} = \frac{\operatorname{v} d}{\operatorname{v}}$$

Table 7.1.2 shows the kinematic viscosity of water depending on temperature.

The **flow velocity v** is calculated from the volume flow \dot{V} and the pipe cross-section

$$v = \frac{4 V}{\pi d^2}.$$

For hydraullically smooth pipes (Re < 65 d/k) and Reynolds' numbers in the range from 2320< Re < 10^5 , the coefficient of pipe friction is calculated according to the **Blasius** formula

$$\lambda = \frac{0.3164}{\sqrt[4]{\text{Re}}}.$$

For pipes in the transition region to rough pipes (65 d/k < Re < 1300 d/k, shown in the diagram as the area beneath the limit curve), the coefficient of pipe friction is calculated according to **Cole**brook

$$\lambda = \left[2 \lg \left(\frac{2.51}{\operatorname{Re} \sqrt{\lambda}} + \frac{0.27}{q_{k}} \right) \right]^{-2}.$$

This is an implicit formula which must be solved iteratively. First, you estimate λ , insert it in the formula and calculate an initial approximation. This approximation is included in the equation again and a second approximation calculated.

Î

Π

Π

If the estimated value is taken from the diagram according to Colebrook and Nikuradse, the first approximation is generally sufficiently precise and the values differ only in the third place after the decimal point.

4.1.2 Performing the experiment

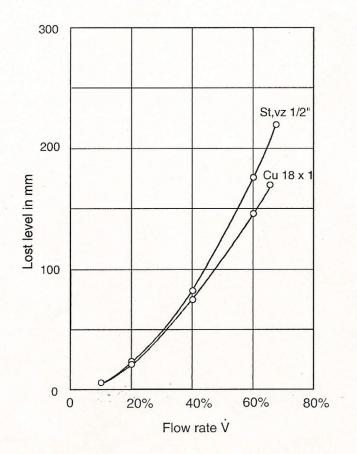
The following experiment compares pipes of different materials (copper and galvanized steel) but the same cross-section (internal diameter 16 mm). The measurement length is 1000 mm.

The flow rate V is specifed in % of the maximum flow rate of the variable-area flowmeter, in this case 1600 l/h corresponding to $44.4 \cdot 10^{-5} \text{ m}^3/\text{s}$.

The displays of the dual manometer and flow-rate meter are noted in tables (Appendix 7.3.1, Work Sheet 1).

Connection of the manometer and the measurements are performed as described in section 3.3.

Measurement results Pipe section 2 : copper pipe 18 x 1, $d_i = 16$ mm, 1 = 1000 mm							
$ \begin{array}{c c} Volume \mbox{ flow } & h_1 \mbox{ in mm } & h_2 \mbox{ in mm } & Loss \mbox{ level } \\ \hline h_v \mbox{ in mm } & \\ \end{array} $							
10	535	530	5				
20	535	515	20				
40	535	462	73				
60	523	378	145				
66 515 346 169							


All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Measurement results Pipe section 3: galvanized Steel $1/2$ ", d _i = 16 mm, 1 = 1000 mm								
Volume flowh1 in mmh2 in mmLost levelV in %h1 in mmh2 in mmhv in mm								
10	495	490	5					
20	498	475	23					
40 502 421 81								
60	506	332	174					
67.5 505 287 218								

The measured loss levels can now be plotted over the flow rate. This indicates the quadratic function of flow rate and thus of flow velocity.

The graph clearly shows the higher flow resistance of the galvanized steel pipe.

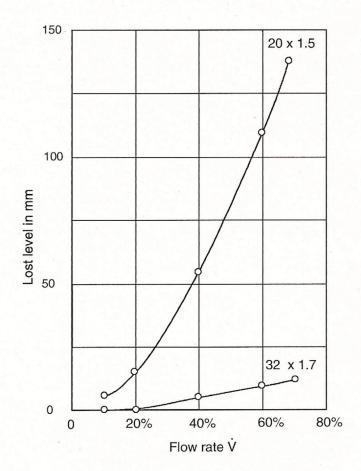
All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Γ

2 PVC pipes (pipe sections 4 and 5) with an external diameter of 20 and 32 mm are then examined. The corresponding internal diameters are 17 and 28.6 mm. The measurement length 1 is again 1000 mm.

This produces the following measurements:

Measurement results Pipe section 4: PVC 20 x 1.5, $d_i = 17$ mm, l = 1000 mm						
Volume flow V in %h1 in mmh2 in mmLost level hv in mm						
10	417	413	4			
20	415	401	14			
40	407	352	55			
60	60 389 281 108					
68 379 242 137						
Measurement results Pipe section 5: PVC 32 x 1.7, $d_i = 28.6$ mm, $l_i = 1000$ mm						
		7,di = 28.6 r	nm,			
Pipe section 5:		7, $d_i = 28.6 r$ h ₂ in mm	nm, Lost level h _v in mm			
Pipe section 5: 1 = 1000 mm Volume flow	PVC 32 x 1.		Lost level			
Pipe section 5: 1 = 1000 mm Volume flow V in %	PVC 32 x 1.	h2 in mm	Lost level h _v in mm			
Pipe section 5: 1 = 1000 mm Volume flow V in % 10	PVC 32 x 1. h ₁ in mm 430	h ₂ in mm 430	Lost level h _v in mm 0			
Pipe section 5: 1 = 1000 mm Volume flow V in % 10 20	PVC 32 x 1. h1 in mm 430 424	h ₂ in mm 430 424	Lost level h _v in mm 0 0			
Pipe section 5: 1 = 1000 mm Volume flow V in % 10 20 40	PVC 32 x 1. h ₁ in mm 430 424 402	h ₂ in mm 430 424 398	Lost level h _v in mm 0 0 4			


All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

-

-

The measurements can be plotted in a graph. An enlargement of the pipe diameter results in a disproportional reduction of losses. In this case, a cross-section enlargement by a factor of 2.83 (17 to 28.6) reduces losses by a factor of 12.45 !

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

-

Π

4.1.3 Comparison with the equation

At this point, the measured loss levels are compared with the values calculated. For the calculation, it is first necessary to know the wall roughness of the pipes used.

Wall roughness of experimental pipes						
Material	Material Surface Wall roughness k					
Copper pipe, Cu technical 0.001 mm smooth						
PVC-pipe technical 0.001 mm smooth						
Steelpipe, St	galvanized	0.1 mm				

According to Table 7.1.2, the kinematic viscosity of water at a temperature of 20°C is given as $v = 1.004 \cdot 10^{-6} \text{ m}^2/\text{s}$. By using these data, it is possible to calculate the loss levels.

Calculation of loss levels							
Pipe section	Internal diameter d in mm	Volun V in %	ne flow V in m ³ /s	Flow velocity v in m/s	Reynolds' numberRe	d/k	smooth/ rough
2 Cu 18 x 1	16	67.5	30 · 10 ⁻⁵	1.49	23700	16000	smooth
3 St, vz. 1/2"	16	66	29 · 10 ⁻⁵	1.44	22900	160	smooth
4 PVC 20 x 1.5	17	68	30 · 10 ⁻⁵	1.32	22350	17000	smooth
5 PVC 32 x 1.7	28.6	70	31 · 10 ⁻⁵	0.48	13700	28600	smooth

Pipe section	λ calculation according to	Coefficient of pipe friction λ	Calculated loss level h _v in m	Measured loss level h _v in m	Deviation
2 Cu 18 x 1	Blasius	0.0255	0.180	0.169	+ 6.5 %
3 St, vz. 1/2"	Colebrook	0.0357	0.235	0.218	+ 7.8 %
4 PVC 20 x 1.5	Blasius	0.0258	0.135	0.137	- 1.3 %
5 PVC 32 x 1.7	Blasius	0.0292	0.012	0.011	+ 9.0%

The consistency between the calculation and the experiment can be described as good.

Π

-

5 Coefficients of resistance of special pipeline elements

5.1 Basic principles

Special pipeline elements and fittings such as pipe bends or elbows, manifolds, changes in cross-sectional area or valves and flaps create additional pressure losses as well as the wall friction losses.

In the case of changes in cross-sectional area and associated velocity changes, when calculating the total pressure loss, it is necessary to consider components of Bernoulli's pressure loss (dyn. pressure). **Bernoulli's equation** with loss term is as follows

$$\frac{\rho v_1^2}{2} + p_1 + \rho g z_1 = \frac{\rho v_2^2}{2} + p_2 + \rho g z_2 + \Delta p_v .$$

Assuming that levels z_1 and z_2 are the same, the measurable **total pressure loss** is calculated as follows:

$$\Delta p_{ges} = p_1 - p_2 = \frac{\rho}{2} (v_2^2 - v_1^2) + \Delta p_v .$$

This then produces the following formula for **loss level**

$$h_{vges} = \frac{1}{2g} (v_2^2 - v_1^2) + h_v$$
.

Apart from a few special cases, in contrast to the wall friction losses examined in the previous section, the additional flow resistance cannot be calculated completely.

Below are the empirically derived coefficients of resistance ζ for the various elements as quoted in the relevant literature. These enable simple calculation of the additional pressure losses

$$p_{vz} = \zeta \rho \frac{v^2}{2}$$

or for loss level

$$h_{vz} = \zeta \frac{v^2}{2 g} \, .$$

Thus, for the total loss level, the formula is as follows

$$h_{vges} = \frac{1}{2g} \left(v_2^2 - v_1^2 \right) + \frac{\lambda_1 \, l_1}{2g} \frac{v_1^2}{d_1} + \frac{\lambda_2 \, l_2}{2g} \frac{v_2^2}{d_2} + \zeta \frac{v_2^2}{2g} \, .$$

The pipe friction resistance must be determined separately for the section before and after the change in cross-sectional area. The coefficient of resistance, on the other hand, only relates to the velocity v_2 after the change in cross-sectional area.

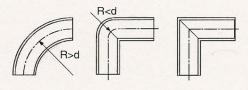
If the velocities are the same, the dyn. pressure component is eliminated and a joint pipe friction component is specified.

From the measured total loss level and the known pipe friction, it is possible to determine the coefficient of friction ζ

$$\zeta = \frac{2 h_{vges} g}{v_2^2} - \left[1 - \left(\frac{d_2}{d_1}\right)^4\right] - \left[\lambda_1 \frac{l_1}{d_1} \left(\frac{d_2}{d_1}\right)^4 + \lambda_2 \frac{l_2}{d_2}\right].$$

Without a change in cross-sectional area ($d_1/d_2 = 1$), the expression is simplified as follows

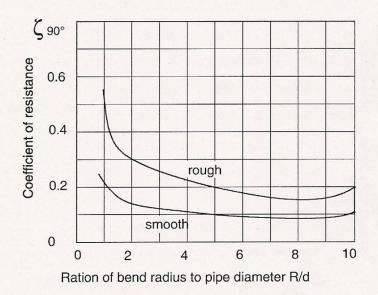
$$\zeta = \frac{2 h_{vges} g}{v^2} - \lambda \frac{1}{d}$$


All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Π

Knee

5.2 Pipe bends



Bend

Elbow

With pipe bends, the coefficient of resistance ζ depends on the deflection angle of the flow and the ratio of the elbow radius to the pipe diameter. Furthermore, the coefficient of resistance is influenced by the shape of the elbow.

For the special case of a pipe bend with a 90° deflection, the following diagram applies to smooth and rough pipes.

For pipe angles, i.e. bend radii which are smaller than the pipe diameter (R/d<1), the coefficients of resistance of knee sections apply approximately. For example, for a 90° knee section in a smooth pipe a ζ of 1.13 applies, and for rough pipes, a ζ of 1.27.

5.2.1 Performing the experiment

Connect a dual manometer to the measuring glands of the knee (pipe section 1) and perform the measurement as described in section 3.3. Note the displays of the dual manometer and the flowmeter in the table on work sheet 1, 7.3.

In a similar manner, perform the measurement with an elbow and a bend (pipe section 1).

Measurement results pipe section 1: PVC 20 x 1, knee, 1=200 mm						
Volume flow V in %	h1 in mm	h ₂ in mm	Lost level h_v in mm			
20	552	539	13			
40	550	498	52			
60	550	431	119			
66	550	403	147			

Measurement results

Г

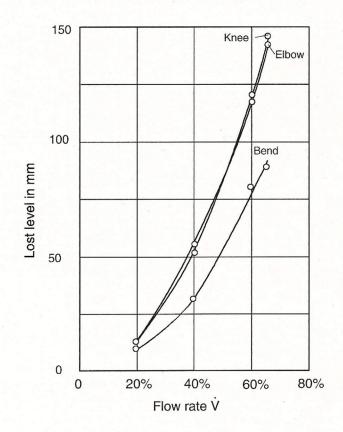
pipe section1: PVC 20 x 1, elbow, 1= 91 mm

Volume flow V in %	h1 in mm	h ₂ in mm	Lost level h _v in mm				
20	523	510	13				
40	520	466	54				
60	512	396	116				
66	509	366	143				

Measurement results

pipe section1: PVC 20 x 1, bend,

l= 183 mm			
Volume flow V in %	h ₁ in mm	h ₂ in mm	Lost level h _v in mm
20	346	337	9
40	326	295	31
60	290	208	82
66	275	187	88


All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

[

By plotting the measurements on a graph, it can be seen that losses increase quadratic to the flow rate and hence the flow velocity.

Losses with the knee and the elbow are considerably higher than with the bend.

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

5.2.2 Calculating the coefficients of resistance

The coefficients of resistance are to be determined from the measurements for the knee, elbow and pipe bend. As no change in cross-sectional area occurs, the simplified formula for ζ can be used in the calculation

$$\zeta = \frac{2 h_{vges} g}{v^2} - \lambda \frac{1}{d} \, .$$

1 is the pipe length between the measuring glands in relation to the centre line of the pipe.

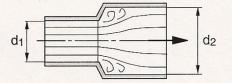
Pipe section	Internal length		Volume flow		Flow	Reynolds'	d/k
	diameter in d in mm		V in %	V in m ³ ∕s	velocity. v in m/s	numberRe	
1 Knie	17	200	66	29 · 10 ⁻⁵	1.28	21700	17000
1 Winkel	17	91	66	29 · 10 ⁻⁵	1.28	21700	17000
1 Bogen 🥌	17	183	66	29 · 10 ⁻⁵	1.28	21700	17000

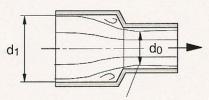
Pipe section	λ calculation according to	Coefficient of pipe friction λ	Measured loss level h _{vges} in m	Coefficient of resistanceζ
1 Knie	Blasius	0.0260	0.147	1.45
1 Winkel	Blasius	0.0260	0.143	1.41
1 Bogen	Blasius	0.0260	0.088	0.77

The coefficient of resistance of the knee and the elbow corresponds fairly well to the value for the rough knee bend specified in the literature ($\zeta_{rough} = 1.27$).

The coefficient of resistance for the bend is considerably higher than specified in the literature (for R/d = 2.35, the diagram indicates a reading of $\zeta_{smooth} = 0.14$, and $\zeta_{rough} = 0.28$). The large deviation may be due to an imperfect connection between the pipe and the bend.

1

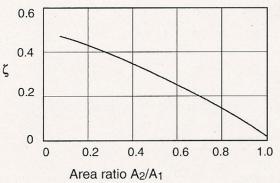

n


-

5.3 Changes in cross-sectional area

The changes in cross-sectional area present in the test stand consist of a continuous and a discontinuous expansion and taper. For the discontinuous change in cross-sectional area, the coefficient of resistance can be derived from Bernoulli's equation and the principle of linear momentum.

Constriction of the flow cross-section


The following applies to the expansion

$$\zeta = \left(\frac{A_2}{A_1} - 1\right)^2 = \left(\frac{d_2^2}{d_1^2} - 1\right)^2.$$

Accordingly, the following applies to the taper

ζ=	$\left(\frac{A_1}{A_0}-1\right)$	$^{2} =$	$\left(\frac{d_{1}^{2}}{d_{0}^{2}}-1\right)$	2
	(10))	$\left(u_{0}\right)$	

In this equation A_0 or d_0 is the constricted crosssectional area. As this is generally unknown, with tapers, the coefficient of resistance is taken from the following diagram.

Coefficient of resistance for discontinuous taper

With a continuous change in cross-sectional area, the coefficients of resistance can be taken from special diagrams (Section 7.1.3).

5.3.1 Performing the experiment

Connect the dual manometer to the measurement glands of the continuous cross-sectional area expansion (pipe section 6) and perform the measurement as described in section 3.3. Note the displays of the dual manometer and the flowmeter in the table on work sheet 1, 7.3.

In a similar way, perform the measurement with the continuous cross-sectional area taper (pipe section 6).

Measurement results pipe section 6: cross-section expansion 20 - 32 , cont., d_1 = 17 mm, d_2 = 28.6 mm, 1 = 125 mm					
Volume flow V in %	h1 in mm	h ₂ in mm	Loss level h _v in mm		
10	605	606	-1		
20	600	601	-1		
40	581	580	-1		
60	551	545	6		
68	535	528	7		
Measurement results pipe section 6: cross section taper 32 - 20 , cont., d1= 28.6 mm, d2 = 17 mm, 1 = 125 mm					
pipe section 6:	cross section				
pipe section 6:	cross section				
pipe section 6: cont., d ₁ = 28.6 Volume flow	cross section mm, $d_2 = 17$	mm, 1 = 125	mm Loss level		
pipe section 6: cont., d ₁ = 28.6 Volume flow V in %	cross section mm, $d_2 = 17$ h_1 in mm	mm, 1 = 125 h ₂ in mm	i mm Loss level h _v in mm		
pipe section 6: cont., d ₁ = 28.6 Volume flow V in %	cross section mm, $d_2 = 17$ h_1 in mm 492	mm, 1 = 125 h ₂ in mm 491	5 mm Loss level h _v in mm 1		
pipe section 6: cont., d_1 = 28.6 Volume flow V in % 10 20	cross section mm, $d_2 = 17$ h_1 in mm 492 490	mm, 1 = 125 h ₂ in mm 491 480	5 mm Loss level h _v in mm 1 10		
pipe section 6: cont., d ₁ = 28.6 Volume flow V in % 10 20 40	cross section mm, $d_2 = 17$ h_1 in mm 492 490 478	mm, 1 = 125 h ₂ in mm 491 480 440	5 mm Loss level h _v in mm 1 10 38		

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

5

[

-

Repeat these measurements using the discontinuous changes in cross-sectional area in pipe section 7.

Measurement results pipe section 7: cross section expansion 20 - 32 , discont., d_1 = 17 mm, d_2 = 28.6 mm, 1 = 100 mm				
Volume flow V in %	h1 in mm	h ₂ in mm	Lost level h _v in mm	
10	410	411	-1	
20	405	404	1	
40	380	375	5	
60	340	328	12	
68	318	301	17	

Measurement results

pipe section 7: cross section taper 32 - 20,

I	discont.,	$d_1 = 28$	8.6 mm	$d_2 =$	17	mm,	1 =	100	mm

Volume flow V in %	h ₁ in mm	h ₂ in mm	Lost level h _v in mm
10	410	409	1
20	406	399	7
40	393	359	34
60	369	290	79
68	355	253	102

5.3.2 Evaluation of the experiment

By plotting the measurements on a graph, it can be seen that differential pressure increases quadratic to the flow rate and hence to the flow velocity.

Π

1

1

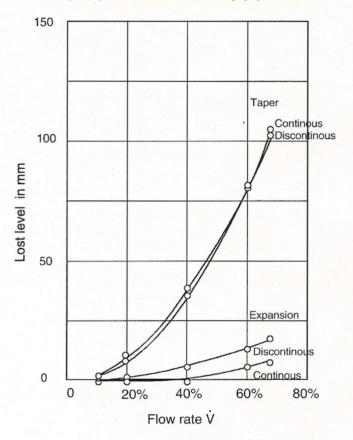
Π

1

Π

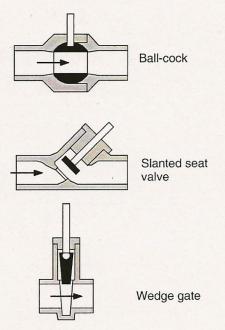
-

Π


2

1

-


It is interesting to note that virtually no pressure loss occurs with the expansion. There may even be a pressure gain, whereby the increase in pressure resulting from the loss in velocity outweighs the drop in pressure caused by pipe friction.

Furthermore, it is worth noting the slight difference between the continuous and discontinuous changes in cross-sectional area occurring in the elements of the test stand.

5.4 Shut-off devices

The test stand contains the following shut-off devices in pipe sections 8 and 9:

- Ball-cock
- Slanted seat valve or free-flow valve
- Gate

When open, the **ball-cock** has a completely smooth, unrestricted cross-sectional aperture.

Accordingly, the lowest pressure losses are to be expected with this type of shut-off device. Coefficients of resistance of as little as $\zeta_{\rm R} = 0.03$ can be achieved.

Due to its fissured cross-sectional aperture, the **slan**ted seat valve has a considerably higher coefficient of resistance in the range from $\zeta_R = 1.5-2.0$. However, it is still considerably more favourable to flow than a conventional DIN straight seat valve where the flow is deflected twice through 90°. In such a case, it is necessary to calculate a coefficient of resistance of approximately $\zeta_R = 4.0$.

Like the ball-cock, the **gate**, in this case a wedge gate, also has a completely unrestricted cross-sectional aperture, although this shut-off valve has lateral recesses to hold the sealing surfaces which results in the formation of eddies. For this reason, at $\zeta_{\rm R} = 0.2-0.3$, the coefficient of resistance is not as favourable as with the ball-cock.

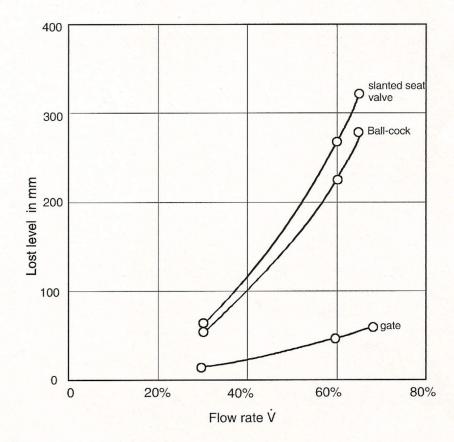
5.4.1 Performing the experiment

Connect the dual manometer to the measuring glands of the ball-cock (pipe section 8) and perform the measurement with different flow rates as described in section 3.3. Note the displays of the dual manometer and the flowmeter in the table on worksheet 1, 7.3.

In a similar way, perform the measurement using the slanted seat valve (pipe section 8) and gate (pipe section 9).

Measurement results pipe section 8: ball-cock 1= 146 mm				
Volume flowh1 in mmh2 in mmLost levelV in %h1 in mmh2 in mmhv in mm				
30	472	420	52	
60	500	277	223	
65	510	232	278	

Measurement results pipe section 8: slanted seat valve 1= 240 mm				
Volume flowh1 in mmh2 in mmLost levelV in %h1 in mmh2 in mmhv in mm				
30	472	410	62	
60	510	242	268	
65	515	193	322	


Measurement results pipe section 9: gate 1= 167 mm					
Volume flow V in %	h1 in mm	h ₂ in mm	Lost level h_v in mm		
30	484	470	14		
60	449	400	49		
68	430	370	60		

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

By plotting the measurements on a graph, it can be seen that, as expected, the slanted seat valve has the highest losses. The gate is distinguished by very low losses. Contrary to expectations, the ball-cock has an uncharacteristically high flow resistance.

This is due to the internal structure of the model used. The ball-cock was not specifically designed by the manufacturer with the aim of a low flow resistance. Its cross-sectional aperture, at 14 mm, is well below the pipe diameter and the connections have sharp edges.

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

5.4.2 Calculating the coefficients of resistance

For the shut-off devices ball-cock, slanted seat valve and gate, the coefficients of resistance are then calculated using the following formula

$$\zeta_{\rm R} = \frac{2 \, h_{\rm vges} \, g}{v^2} - \lambda \, \frac{1}{d} \, .$$

The distance between the measuring glands is used as the length 1 .

Calculation of the coefficients of Resistance ζ_R for ball-cock, slanted seat valve and gate

Pipe section	Internal	Length	Volume flo	w	Flow	Reynolds'	d/k
	diameter d in mm	in mm	.V in %	V in m³/s	velocity v in m/s	number Re	
8 Ball-cock	17	146	65	28.8 · 10 ⁻⁵	1.26	22000	17000
8 Valve	17	240	65	28.8 [.] 10 ⁻⁵	1.26	22000	17000
9 Gate	17	167	68	30.2 [.] 10 ⁻⁵	1.32	21000	17000

Pipe section	λ calculation according to	Cofficient of pipe friction λ	Measured lost level h _{vges} in m	Coefficient of resistance ζ _R
8 Ball-cock	Blasius	0.0260	0.278	3.21
8 Valve	Blasius	0.0260	0.322	3.61
9 Gate	Blasius	0.0263	0.060	0.417

In total, the coefficients of resistance are considerably higher than specified in the literature. For the ball-cock, this is primarily due to the design features mentioned above. In the case of the slanted seat valve and the gate, it should be noted that the data in the literature refers to larger nominal widths. In general, it can be assumed that resistance increases as the dimensions decline.

-

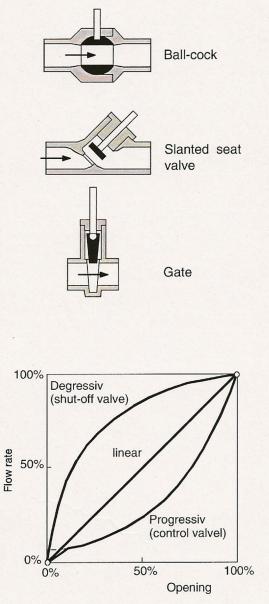
Π

Π

Π

Π

1


Π

-

-

Opening characteristics of shut-off devices

Opening characteristics of valves

These experiments examine the restriction behaviour of the shut-off devices ball-cock, valve and gate.

If these shut-off devices are used to halt certain volume flows in the pipeline system, it is essential to achieve good metering properties at low degrees of opening and volume flows.

The optimum solution is a progressive characteristic curve in which the degree of opening increases first slowly and then with increasing acceleration. Adjustment of the shut-off device by a certain absolute amount results in a corresponding percentual change in the volume flow.

For example:

If a valve with a maximum opening of 100% is opened from 1 to 2 revolutions, in other words, by 10% absolute, the volume flow will increase relatively by 10%, e.g. from 1 to 1.1 l/min.

This so-called "equal-percentage" characteristic curve is labelled progressive in the adjacent diagram. In addition, a linear and a degressive characteristic have been drawn in, as occurring in typical shut-off devices.

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

6.1 Performing the experiment

As the pressure differences in closed valves exceed the measuring ranges of the manometers available, pressure is not measured.

- Seal all measuring glands with dummy plugs
- Connect pipe section 8 (ball valve, slanted seat valve) to the infeed and discharge tube
- Open the discharge from the pipe section
- Open the inflow to the pipe section
- Close the ball-cock completely
- Open the slanted seat valve fully
- Open the ball-cock gradually by the defined angle e.g. 30° and make a note of the flow rate
- Open the ball-cock fully
- Close the slanted seat valve completely
- Gradually open the slanted seat valve by the defined number of revolutions and make a note of the flow rate.

IMPORTANT! As the valve reacts very sensitively at the beginning, only open in small stages of 1/4 revolution initially.

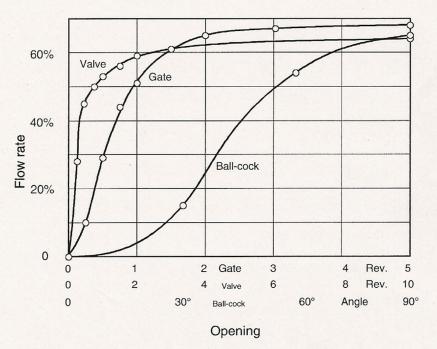
- Connect pipe section 9 to the infeed and discharge tube
- Seal all measuring glands with dummy plugs
- Open the discharge from the pipe section
- Open the inflow to the pipe section
- Close the gate completely

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Gate

Ball-cock

Slanted seat valve



- Gradually open the slanted seat valve by the defined number of revolutions and make a note of the flow rate.

IMPORTANT! As the gate reacts very sensitively at the beginning, only open in small stages of 1/4 revolution initially.

6.2 Evaluation of the experiment

The noted measurements can be plotted in a graph over the opening of the shut-off device.

The valve opens very quickly and is therefore a typical shut-off device. The valve is equally as unsuitable as the gate for restricting a volume flow. The ball-cock, on the other hand, is far better suited as a restrictor device. Admittedly, none of the shut-off devices examined had a purely progressive characteristic curve indicating particularly good restriction characteristics.

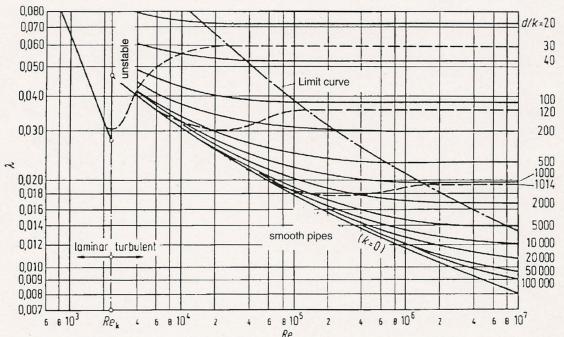
- 7 Appendix
- Tables and diagrams 7.1
- Wall roughness 7.1.1

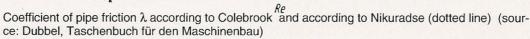
Wall roughness of the experimental pipes					
Material Surface Wall roughness k in mm					
Copper pipe, Cu	techn. smooth	0.001			
PVC pipe	techn. smooth	0.001			
Steel pipe, St galvanized 0.100					

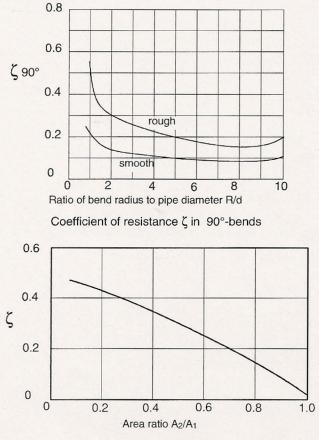
7.1.2 **Kinematic viscosity**

Kinematic viscosity of water depen- ding on temperature (source: Kalide, Technische Strömungslehre)			
Temperature in °C	Kinem. viscosity ν in 10 $^{-6}$ m ² /s		
10	1.297		
11	1.261		
12	1.227		
13	1.194		
14	1.163		
15	1.134		
16	1.106		
17	1.079		
18	1.055		
19	1.028		
20	1.004		
21	0.980		
22	0.957		
23	0.935		
24	0.914		
25	0.894		
26	0.875		
27	0.856		
28	0.837		
29	0.812		
30	0.801		

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg


1

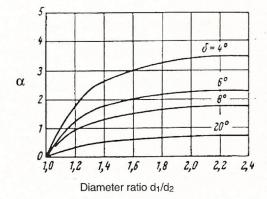

-


-

7.1.3 Diagrams

Coefficient of resistance ζ for discontinuous taper

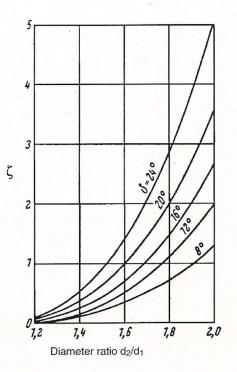
Π

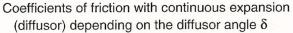

[

Π

Π

(





Wall friction factor α witf continuous tapering (nozzle) depending on the tapering angle δ

$$\zeta = \alpha \, \frac{\lambda_1 + \lambda_2}{2}$$

(source: Kalide, Einführung in die technische Strömungslehre)

(source: Kalide, Einführung in die technische Strömungslehre)

7.2 Formulae

> $\dot{V} [m^3/s] = \frac{\dot{V} [\%]}{100\%} \cdot \frac{1600 l/h}{1000 l/m^3 \cdot 3600 s/h} = \dot{V} [\%] \cdot 4.44 \cdot 10^6$ $v = \frac{4 V}{\pi d^2}$ Flow velocity: $Re = \frac{v d}{v}$ Reynolds' number:

Coefficient of pipe friction according to Blasius (smooth):

$$\lambda = \frac{0.3164}{\sqrt[4]{\text{Re}}}$$

Volume flow in m³/s

Coefficient of pipe friction according to Colebrook (rough), requires an iterative solution, take starting values from diagram

$$\lambda = \left[2 \lg \left(\frac{2.51}{\text{Re } \sqrt{\lambda}} + \frac{0.27}{d_k} \right) \right]^{-2}$$

Pressure loss and loss level due to pipe friction

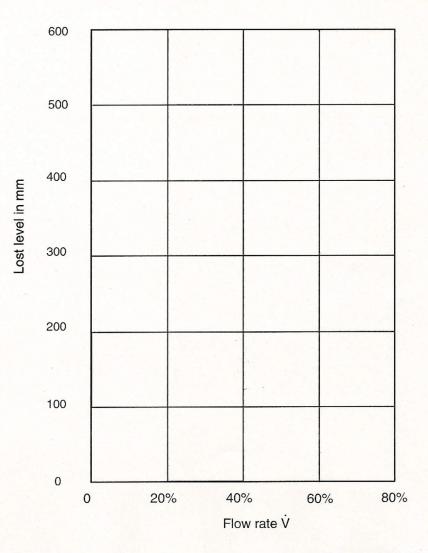
$$p_v = \frac{\lambda I}{2 d} \rho v^2$$
, $h_v = \frac{\lambda I}{d} \frac{v^2}{2 g}$

Pressure loss and loss level due to coefficient of resistance

$$p_{vz} = \zeta \rho \frac{v^2}{2}$$
, $h_{vz} = \zeta \frac{v^2}{2g}$

Total loss level in special pipeline elements

$$h_{vges} = \frac{1}{2g} (v_2^2 - v_1^2) + \frac{\lambda_1 l_1}{d_1} \frac{v_1^2}{2g} + \frac{\lambda_2 l_2}{d_2} \frac{v_2^2}{2g} + \zeta \frac{v_2^2}{2g}$$


Work sheets

7.3.1 Work sheet 1: Measurement results

Measuring results				
Volume flow V in %	Level pipe 1 h1 in mm	Level pipe 2 h ₂ in mm	Lost level $h_v = h_1 - h_2$ in mm	

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

7.3.2 Work sheet 2: Calculation model for pipe friction

Calculation of	of loss levels					
Pipe section	Inner diameter d in mm	Volun	Volume flow		Reynolds'	Wall roughness
		℣ in %	℣ in m ³ /s	velocity. v in m/s	number Re	ratio d/k
			-			

Pipe section	λ calculation according to Blasius or Colebrook	Coefficient of pipe friction λ	Calculated loss level h_v in m	Measured lost level h_v in m	Deviation in %
					Series Series

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Π

-

Π

7.3.3 Work sheet 3: Calculation model for coefficients of resistance

Calculation	of coefficien	ts of resi	stanceζ				
Pipe section	Inner	Lenght	Volume flow		Flow	Reynolds'	d/k
	diameter d in mm	1 in mm	℣ in %	𝘧 in m³/s	velocity. v in m/s	number Re	

Pipe section	λ calculation according to Blasius or Colebrook	Coefficient of pipe friction λ	Measured lost level h_{vges} in m	Coefficient of resistance ζ

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

muex	
А	
	Absolute pressure
В	
	Ball-cock 36, 40 Bernoulli's equation 26 Blasius formula 20, 46
С	
	Check test stand8Colebrook and Nikuradse, diagram19, 44Colebrook formula20, 46
D	
	Degressiv40Differential pressure9Discharge4Dummy plugs8
Е	
	Equal-percentage characteristic40Expansion of pipe32Experiments18
F	
	Flow measurement16Flow rate16Flow velocity20, 46Flowmeter, variable-area16Function test stand5
G	
	Gate
Н	Likeles lie en este
1	Hydraullically smooth 20
	Infeed

-

Γ

Π

1

8

Indox

HM 120		e Panel for Investigating Guanda Systems
	к	
	IX.	Kinematic viscosity 43
	L	
		Length ,measurement
	М	
		Manometer, dual8Manometer, U-tube14Manometer, 6-tube panel16Measuring glands4Mercury traps14
	0	Mercury, safety instructions 14
	U	Opening characteristics 40
	Р	
		Pipe bends28Pipe elbows28Pipe flow with friction18Pipe friction, coefficient of18Pipe knees28Pressure loss18, 46Progressiv40
	R	
		Resistance, coefficient of 26, 44 Reynolds' number 20, 46 Roughness, wall 19, 25, 43
	S	
		Set up test stand
	Т	
		Taper of pipe32Technical data6Total pressure loss26Turbulent pipe flow18
	V	
		Valve, slanted seat

All rights reserved G.U.N.T. Gerätebau GmbH, Hamburg

Π

Π

W		
	Wall friction factor	
Z		
	Zero position, manometer	 12

GESAMTPROGAMM PROGRAM OUTLINE

Technische Mechanik und Werkstoffprüfung Theory of Machines & Properties of Materials

Mechatronik Mechatronics

Wärmelehre und Versorgungstechnik Thermodynamics, Heating & Sanitary Systems

Technische Strömungslehre Fluid Mechanics & Hydrology

Regelungs- und Steuerungstechnik Process Control Engineering

G.U.N.T. Gerätebau GmbH Fahrenberg 14, D-22885 BarsbüttelMailing Address: G.U.N.T. Gerätebau GmbH PO BOX 1125, D-22881 Barsbüttel, Germany Phone:+49 40 67 08 54- 0Fax:+49 40 67 08 54-42

E-mail: sales@gunt.de Internet: http://www.gunt.de