click "back" button from web tool bar to return to slides

Sample calculations - connection 35

All the following calculations and assumptions were based on estimates from the field example.

Assumptions:

1. Use W18X46 for beam
2. W18X46 uses A992 steel by table 2-3
3. Use L4X4X3/8 for angle
4. L4X4X3/8 uses A36 steel by table 2-3
5. Assume A325N bolts
6. Assume bolts are $3 / 4$ in diameter
7. Assume $1 / 8$ in tolerance
8. Assume no deformation for bolt bearing
9. Assume L4X4X3/8 controls for bolt bearing with $\mathrm{Fu}=58 \mathrm{ksi}$ for A 36 steel versus $\mathrm{Fu}=65 \mathrm{ksi}$ for A992 steel
To calculate bolt bearing, we followed equation (J3-6a). The angles were assumed to be A36 steel with a yield strength of 36 ksi , and an ultimate strength of 58 ksi . The angles used in the connections are L4 $4 \times 3 / 8$. Deformation around the bolt hole was used as a design consideration. The following calculations were used to determine the bearing capacity of the angles.
(Equation J3-6a) $\Phi R_{n}=0.75 * \min \left\{\begin{array}{l}1.2 * L_{c} * t * F_{u} \\ 2.4 * d * t * F_{u}\end{array}\right\}$
$\mathrm{L}_{\mathrm{C}}=$ Clear distance, in the direction of the force, between the edge of the hole and the edge of the adjacent hole or edge of the material, in inches.
$\mathrm{t}=$ thickness of the connected material, in inches
$\mathrm{F}_{\mathrm{u}}=$ ultimate tensile strength of the connected material, in inches
$\mathrm{d}=$ nominal bolt diameter

click "back" button from web tool bar to return to slides

By table J3.4 $\mathrm{L}_{\mathrm{e} \min }=11 / 4$ in $\mathrm{L}_{\mathrm{e} \max }=\left(1.5\left(\mathrm{~d}_{\text {bolt }}\right), \mathrm{L}_{\mathrm{e}}\right) \quad \mathrm{Le}=11 / 4 \mathrm{in}$
Edge Bolts: $\quad L_{c}=1 \frac{1}{4}$ in

$$
\phi R_{n, e d g e}=\min \left\{\begin{array}{l}
(1.2)\left(1 \frac{1}{4} \text { in }\right)\left(\frac{3}{8} \text { in }\right)(58 k s i)=32.63 k \\
(2.4)\left(\frac{3}{4} \text { in }\right)\left(\frac{3}{8} \text { in }\right)(58 k s i)=39.15 k
\end{array} \quad \phi R_{n, e d g e}=21.21 \mathrm{k}\right.
$$

Interior Bolts: $L_{c}=3 i n-1\left(\frac{3}{4}\right.$ in $+\frac{1}{8}$ in $)=2 \frac{1}{8}$ in

$$
\begin{aligned}
& \phi R_{n, \text { int erior }}=\min \left\{\begin{array}{l}
(1.2)\left(2 \frac{1}{8} \text { in }\right)\left(\frac{3}{8} \text { in }\right)(58 \mathrm{ksi})=55.46 \mathrm{k} \\
(2.4)\left(2 \frac{1}{8} \text { in }\right)\left(\frac{3}{8} \text { in }\right)(58 \mathrm{ksi})=110.93 \mathrm{k}
\end{array} \quad \phi R_{n, \text { interior }}=55.46 \mathrm{k}\right. \\
& \phi R_{n}=\phi\left[(\# \text { edges })\left(R_{n, \text { edge }}\right)+(\# \text { int eriors })\left(R_{n, \text { int erior }}\right)\right] \\
& \frac{\phi R_{n}}{2}=0.75[(1)(32.63 k)+(3)(55.46 \mathrm{k})]
\end{aligned}
$$

$$
\phi R_{n}=298.52 k \text { for both angles }
$$

$$
\mathbf{P}_{\mathbf{u}} \leq 298.52 \mathrm{k} \text { for Bolt Bearing }
$$

click "back" button from web tool bar to return to slides

To calculate bolt shear, we followed equation (J3-1). The bolts used in the connection are $3 / 4$ " A325N bolts. The A325N bolts have a yield strength of 48 ksi. The following calculations were used to determine the shear rupture capacity of the bolts.
(Equation J3-1) $\Phi R_{n}=0.75 * F_{n v} * A_{b} * n * N$
$\mathrm{F}_{\mathrm{n}}=$ nominal tensile or shear stress from table J3.2, ksi
$\mathrm{A}_{\mathrm{b}}=$ nominal area of each bolt
$\mathrm{n}=$ number of shear planes
$\mathrm{N}=$ number of bolts

Bolt Shear FBD

By table J3.2: $\quad \mathrm{F}_{\mathrm{nv}}=48 \mathrm{ksi}$ for A325N bolts
For W18X46 Web: $\mathrm{N}=4$ per angle $\quad \mathrm{n}=2$ for web
For Column: $\quad \mathrm{N}=4$ per angle $\quad \mathrm{n}=1$ for column

$$
\begin{array}{ll}
\frac{\phi R_{n}}{2}=(0.75)(21.21 k)(2)(4)=86.12 k & \mathbf{P}_{\mathbf{u}} \leq \mathbf{1 7 2 . 2 4 k} \text { for Bolt Shear for Web } \\
\frac{\phi R_{n}}{2}=(0.75)(21.21 k)(1)(4)=63.63 k & \mathbf{P}_{\mathbf{u}} \leq \mathbf{1 2 7 . 2 6 k} \text { for Bolt Shear in Column }
\end{array}
$$

To calculate shear rupture, we followed equation (J4-4). The angles were assumed to be A36 steel with a yield strength of 36 ksi, and an ultimate strength of 58 ksi . The angles used in the connections are L4 x $4 \times 3 / 8$. The following calculations were used to determine the bearing capacity of the angles.
(Equation J4-4) $\Phi R_{n}=0.75 * 0.6 * F_{u} * A_{n v}$
$\mathrm{F}_{\mathrm{u}}=$ ultimate strength of steel, ksi
$A_{n v}=$ net area subject to shear, in 2

click "back" button from web tool bar to return to slides

sde elevation
$\frac{\Phi R_{n}}{2}=0.75 * 38.625$ kips $=28.971$ kips per angle

$$
\mathbf{P}_{\mathbf{u}} \leq 57.963 \text { kips }
$$

To calculate shear yielding, we followed equation (J4-3). The angles were assumed to be A36 steel with a yield strength of 36 ksi , and an ultimate strength of 58 ksi . The angles used in the connections are L4 $4 \times 3 / 8$. The following calculations were used to determine the bearing capacity of the angles.
(Equation J4-3) $\Phi R_{n}=0.60 * F_{y} * A_{g}$
$\mathrm{F}_{\mathrm{y}}=$ yield strength of steel, ksi
$\mathrm{A}_{\mathrm{g}}=$ gross area subject to shear, in 2

$$
\begin{array}{r}
\frac{\Phi R_{n}}{2}=0.6^{*}(36 \mathrm{ksi})^{*}\left(2.86 \mathrm{in}^{2}\right)=61.776 \text { kips per angle } \\
\mathbf{P}_{\mathbf{u}} \leq \mathbf{1 2 3 . 5 5 0} \mathbf{k i p s}
\end{array}
$$

The maximum capacity of the connection is controlled by the shear rupture of the angle section because is has the lowest capacity (P_{u}) compared to the other limit states. This estimated maximum capacity of the field connection at the Bresnan Arena is $P_{u}=57.963$ kip.

