Sample Calculations – Connection 2

Connection Description

Connection number two consists of a W-section that is welded to an angle on each side of the web, and then bolted to the web of another W-section. There is only one bolt in each angle connection, and the welds runs the full length of all three sides of the angle that are in contact with the W-section. For this connection, we have A992 steel for our two 6 x 12 W-sections and A36 steel for our L 4 x 3 x $\frac{1}{4}$ angle. A $\frac{3}{4}$ " A325N Hex bolt was used, along with an E-70 electrode weld that was applied using the Shield Metal Arc Welding (SMAW) technique.

Limit States

The limit states that will be looked at for this connection are as follows:

- 1.) Bolt Bearing
- 2.) Bolt Shear Rupture
- 3.) Block Shear
- 4.) Weld Strength

<u>Analysis</u>

The following equations were used to evaluate each limit state

<u>Bolt Bearing:</u>

 $\emptyset R_n = \min \{ \emptyset (1.2L_c tF_u); \emptyset (2.4dtF_u) \}$

 F_u = Ultimate tensile strength of the connected material, in ksi

 L_c = Clear distance, in the direction of the force, between the edge of the hole and the edge of the material, in inches

Le' = effective length from center of bolt hole to rolled edge

Le = effective length from center of bolt hole to cut edge

t = Thickness of the connected material, in inches

d = Nominal bolt diameter, in inches

 $R_n = \min\{[1.2 * (2"-0.5 * (0.375")) * (0.25") * (58ksi)]\}$

[2.4 * (0.875") * (0.25") * (58ksi)]}

click "back" button from web tool bar to return to slides

=min{64.16 k, 30.45 k} Therefore, $\emptyset R_n = (0.75)^*(30.45 \text{ k}) = \underline{22.84 \text{ k}}$

Bolt Shear Rupture:

 $\phi R_n = \phi F_n A_b$

 \emptyset = Resistance factor = 0.75

 F_n = Nominal shear strength F_v tabulated in AISC/LRFD Manual Table J3.2, ksi

 A_b = Nominal unthreaded body area of the bolt, in²

Block Shear on Angle:

Block shear on W-section will not control because of the two flanges.

$$\wp P_n = \min \{ \wp [(0.6 * F_u) * A_{nv} + U_{bs} * F_u * A_{nt}] \}$$

$$\emptyset[(0.6 * F_y) * A_{gv} + U_{bs} * F_u * A_{nt}]\}$$

 \emptyset = Resistance factor = 0.75

 A_{gv} = Gross area subjected to shear, in²

 A_{nv} = Net area subjected to shear, in²

 $A_{gt} = Gross$ area subjected to tension, in²

 A_{nt} = Net area subjected to tension, in²

 $U_{bs} = 1.0$ since tension stress is uniform

 F_y = Minimum yield stress, ksi

F_u = Tensile stress, ksi

$$\begin{split} A_{gv} &= 3^{\prime\prime} * 0.25^{\prime\prime} = 0.75 \text{in}^2 & A_{nv} = 0.75 \text{in}^2 - 1 * (^1/_4 ^{\prime\prime} + ^1/_{16} ^{\prime\prime} + ^1/_{16} ^{\prime\prime}) * (^1/_4 ^{\prime\prime}) = 0.656 \text{in}^2 \\ A_{gt} &= 2^{\prime\prime} * 0.25^{\prime\prime} = 0.5 \text{in}^2 & A_{nt} = 0.5 \text{in}^2 - 0 = 0.5 \text{in}^2 \\ & & & & \\ & & &$$

Weld strength:

$$\begin{split} & \emptyset R_n = \min \{ \emptyset F_w A_w; \, \emptyset F_{bm} A_{bm} \} \\ & \emptyset F_w A_w = \emptyset (0.6 F_{EXX}) * (L_w) * (t_w) \\ & t_w = 0.707 * D_w \\ & \emptyset F_{bm} A_{bm} = \min \{ 0.75 * t_{bm} * L_w * (0.6 F_u) \} \\ & 0.75 * U * A_n * F_u ; \\ & 1.0 * A_g * (0.6 F_y) \} \end{split}$$

 ϕ = Resistance factor = 0.75

 F_{bm} = Nominal strength of the base material, ksi F_y = Tensile yield of base material, ksi F_{EXX} = Tensile strength of electrode material, ksi A_w = Effective cross-sectional area of the weld, in² A_g = Gross cross-sectional area of base material, in² t_w = Effective throat dimension, in

 R_n = Nominal strength of weld design material, kips

 F_w = Nominal strength of the weld electrodes

 F_u = Tensile strength of base material, ksi

 A_{bm} = Cross-sectional area of the base material, in²

 A_{nv} = Net area subject to shear, in²

 t_{bm} = Thickness of the base material, in²

 L_w = Length of weld, nominal value, in

Therefore, $\phi F_{bm}A_{bm}$ (Angle) = <u>36.50 k</u>

$$\begin{split} & \& F_{bm} A_{bm} = \min \left\{ \begin{array}{l} 0.75 * 0.230'' * 9'' * (0.6 * 65 \text{ ksi}); \\ & 0.75 * 1.0 * 3.55 \text{ in}^2 * 65 \text{ ksi}; \\ & 1.0 * 3.55 \text{ in}^2 * (0.6 * 50 \text{ ksi}) \right\} & = \min \left\{ \begin{array}{l} 60.55 \text{ k}, 173.06 \text{ k}, 106.50 \text{ k} \right\} \end{split}$$

Therefore, $\&F_{bm}A_{bm}$ (W-section) = <u>60.55 k</u>

CONTROLLING ØP_N

Once we have all of our values calculated, we need to compare them all to find out which value is the controlling value for our connection.

The final values are:

 $\phi P_n = 15.91 \ k$

Therefore, our controlling value for this connection comes from the block shear rupture on the angle bracket.