```
click "back" button from web tool bar to return to slides
```


Sample Calculations - Connection 2

Connection Description

Connection number two consists of a W-section that is welded to an angle on each side of the web, and then bolted to the web of another W-section. There is only one bolt in each angle connection, and the welds runs the full length of all three sides of the angle that are in contact with the W-section. For this connection, we have A992 steel for our two $6 \times 12 \mathrm{~W}$-sections and A36 steel for our L $4 \times 3 \times 1 / 4$ angle. A $3 / 4$ " A325N Hex bolt was used, along with an E-70 electrode weld that was applied using the Shield Metal Arc Welding (SMAW) technique.

Limit States

The limit states that will be looked at for this connection are as follows:
1.) Bolt Bearing
2.) Bolt Shear Rupture
3.) Block Shear
4.) Weld Strength

Analysis

The following equations were used to evaluate each limit state

Bolt Bearing:

$ø \mathrm{R}_{\mathrm{n}}=\min \left\{\varnothing\left(1.2 \mathrm{~L}_{\mathrm{c}} \mathrm{tF}_{\mathrm{u}}\right) ; \varnothing\left(2.4 \mathrm{dtF}_{\mathrm{u}}\right)\right\}$
$\varnothing=$ Resistance factor $=0.75$
$\mathrm{F}_{\mathrm{u}}=$ Ultimate tensile strength of the connected material, in ksi
$\mathrm{L}_{\mathrm{c}}=$ Clear distance, in the direction of the force, between the edge of the hole and the edge of the material, in inches

Le' = effective length from center of bolt hole to rolled edge
$\mathrm{Le}=$ effective length from center of bolt hole to cut edge
$t=$ Thickness of the connected material, in inches
$d=$ Nominal bolt diameter, in inches

$$
\begin{gathered}
\mathrm{R}_{\mathrm{n}}=\min \{[1.2 *(2 "-0.5 *(0.375 ")) *(0.25 ") *(58 \mathrm{ksi})] \\
[2.4 *(0.875 ") *(0.25 ") *(58 \mathrm{ksi})]\}
\end{gathered}
$$

$$
=\min \{64.16 \mathrm{k}, 30.45 \mathrm{k}\}
$$

Therefore, $\varnothing \mathrm{R}_{\mathrm{n}}=(0.75) *(30.45 \mathrm{k})=\underline{22.84 \mathrm{k}}$

Bolt Shear Rupture:

$$
ø \mathrm{R}_{\mathrm{n}}=\varnothing \mathrm{F}_{\mathrm{n}} \mathrm{~A}_{\mathrm{b}}
$$

$$
\varnothing=\text { Resistance factor }=0.75
$$

$\mathrm{F}_{\mathrm{n}}=$ Nominal shear strength F_{v} tabulated in AISC/LRFD Manual Table J3.2, ksi
$\mathrm{A}_{\mathrm{b}}=$ Nominal unthreaded body area of the bolt, in ${ }^{2}$
$ø \mathrm{R}_{\mathrm{n}}=(0.75) *(48 \mathrm{ksi}) *(3 / 4 ")^{2} *(\pi / 4)=\underline{15.91 \mathrm{k}}$

click "back" button from web tool bar to return to slides

Block Shear on Angle:

Block shear on W-section will not control because of the two flanges.

$$
\begin{array}{r}
\varnothing \mathrm{P}_{\mathrm{n}}=\min \left\{\varnothing\left[\left(0.6 * \mathrm{~F}_{\mathrm{u}}\right) * \mathrm{~A}_{\mathrm{nv}}+\mathrm{U}_{\mathrm{bs}} * \mathrm{~F}_{\mathrm{u}} * \mathrm{~A}_{\mathrm{nt}}\right]\right. \\
\left.\varnothing\left[\left(0.6 * \mathrm{~F}_{\mathrm{y}}\right) * \mathrm{~A}_{\mathrm{gv}}+\mathrm{U}_{\mathrm{bs}} * \mathrm{~F}_{\mathrm{u}} * \mathrm{~A}_{\mathrm{nt}}\right]\right\}
\end{array}
$$

$\varnothing=$ Resistance factor $=0.75$
$\mathrm{A}_{\mathrm{gv}}=$ Gross area subjected to shear, in^{2}
$\mathrm{A}_{\mathrm{nv}}=$ Net area subjected to shear, in ${ }^{2}$
$\mathrm{A}_{\mathrm{gt}}=$ Gross area subjected to tension, in^{2}
$\mathrm{A}_{\mathrm{nt}}=$ Net area subjected to tension, in 2
$\mathrm{U}_{\mathrm{bs}}=1.0$ since tension stress is uniform
$\mathrm{F}_{\mathrm{y}}=$ Minimum yield stress, ksi
$\mathrm{F}_{\mathrm{u}}=$ Tensile stress, ksi
$\mathrm{A}_{\mathrm{gv}}=3 " * 0.25 "=0.75 \mathrm{in}^{2} \quad \mathrm{~A}_{\mathrm{nv}}=0.75 \mathrm{in}^{2}-1 *(1 / 4 "+1 / 16 "+1 / 16 ") *(1 / 4 ")=0.656 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{gt}}=2 " * 0.25 "=0.5 \mathrm{in}^{2} \quad \mathrm{~A}_{\mathrm{nt}}=0.5 \mathrm{in}^{2}-0=0.5 \mathrm{in}^{2}$
$ø \mathrm{P}_{\mathrm{n}}=\min \left\{\left[0.75 *(0.6 * 36 \mathrm{ksi}) *\left(0.5 \mathrm{in}^{2}\right)+(58 \mathrm{ksi}) *\left(0.5 \mathrm{in}^{2}\right)\right]\right.$

$$
\begin{aligned}
& \left.\left[0.75 *(0.6 * 58 \mathrm{ksi}) *\left(0.656 \mathrm{in}^{2}\right)+(58 \mathrm{ksi}) *\left(0.5 \mathrm{in}^{2}\right)\right]\right\} \\
& \quad=\min \{29.85 \mathrm{k}, 38.87 \mathrm{k})
\end{aligned}
$$

Therefore, $\varnothing \mathrm{P}_{\mathrm{n}}=\underline{29.85 \mathrm{k}}$

Weld strength:

$$
\begin{aligned}
& ø \mathrm{R}_{\mathrm{n}}=\min \left\{\varnothing \mathrm{F}_{\mathrm{w}} \mathrm{~A}_{\mathrm{w}} ; \varnothing \mathrm{F}_{\mathrm{bm}} \mathrm{~A}_{\mathrm{bm}}\right\} \\
& ø \mathrm{~F}_{\mathrm{w}} \mathrm{~A}_{\mathrm{w}}=\varnothing\left(0.6 \mathrm{~F}_{\mathrm{EXx}}\right) *\left(\mathrm{~L}_{\mathrm{w}}\right) *\left(\mathrm{t}_{\mathrm{w}}\right) \\
& \mathrm{t}_{\mathrm{w}}=0.707 * \mathrm{D}_{\mathrm{w}} \\
& \varnothing \mathrm{~F}_{\mathrm{bm}} \mathrm{~A}_{\mathrm{bm}}=\min \left\{0.75 * \mathrm{t}_{\mathrm{bm}} * \mathrm{~L}_{\mathrm{w}} *\left(0.6 \mathrm{~F}_{\mathrm{u}}\right) ;\right. \\
& 0.75 * \mathrm{U} * \mathrm{~A}_{\mathrm{n}} * \mathrm{~F}_{\mathrm{u}} ; \\
& \left.1.0 * \mathrm{~A}_{\mathrm{g}} *\left(0.6 \mathrm{~F}_{\mathrm{y}}\right)\right\}
\end{aligned}
$$

$\varnothing=$ Resistance factor $=0.75$
$\mathrm{F}_{\mathrm{bm}}=$ Nominal strength of the base material, ksi
$\mathrm{F}_{\mathrm{y}}=$ Tensile yield of base material, ksi
$\mathrm{F}_{\mathrm{EXX}}=$ Tensile strength of electrode material, ksi
$\mathrm{A}_{\mathrm{w}}=$ Effective cross-sectional area of the weld, in ${ }^{2}$
$\mathrm{A}_{\mathrm{g}}=$ Gross cross-sectional area of base material, in 2
$\mathrm{t}_{\mathrm{w}}=$ Effective throat dimension, in
$R_{n}=$ Nominal strength of weld design material, kips
$\mathrm{F}_{\mathrm{w}}=$ Nominal strength of the weld electrodes
$\mathrm{F}_{\mathrm{u}}=$ Tensile strength of base material, ksi
$\mathrm{A}_{\mathrm{bm}}=$ Cross-sectional area of the base material, in ${ }^{2}$ $A_{n v}=$ Net area subject to shear, in ${ }^{2}$
$\mathrm{t}_{\mathrm{bm}}=$ Thickness of the base material, in 2
$\mathrm{L}_{\mathrm{w}}=$ Length of weld, nominal value, in

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{w}}=0.707 * 1 / 4 "=0.177 " \\
& ø \mathrm{~F}_{\mathrm{w}} \mathrm{~A}_{\mathrm{w}}=0.75 *(0.6 * 70 \mathrm{ksi}) * 9 " * 0.177 "=\underline{50.18 \mathrm{k}}
\end{aligned}
$$

Angle Section

$$
\begin{aligned}
& ø \mathrm{~F}_{\mathrm{bm}} \mathrm{~A}_{\mathrm{bm}}=\min \{0.75 * 0.25 " * 9 *(0.6 * 58 \mathrm{ksi}) ; \\
& 0.75 * 1.0 * 1.69 \mathrm{in}^{2} * 58 \mathrm{ksi} ; \\
&\left.1.0 * 1.69 \mathrm{in}^{2} *(0.6 * 36 \mathrm{ksi})\right\} \quad=\min \{58.73 \mathrm{k}, 73.52 \mathrm{k}, 36.50 \mathrm{k}\}
\end{aligned}
$$

Therefore, $\varnothing \mathrm{F}_{\mathrm{bm}} \mathrm{A}_{\mathrm{bm}}($ Angle $)=\underline{36.50 \mathrm{k}}$

$$
\begin{aligned}
& ø \mathrm{~F}_{\mathrm{bm}} \mathrm{~A}_{\mathrm{bm}}=\min \{0.75 * 0.230 " 9 " *(0.6 * 65 \mathrm{ksi}) \\
& 0.75 * 1.0 * 3.55 \mathrm{in}^{2} * 65 \mathrm{ksi} ; \\
&\left.1.0 * 3.55 \mathrm{in}^{2} *(0.6 * 50 \mathrm{ksi})\right\}=\min \{60.55 \mathrm{k}, 173.06 \mathrm{k}, 106.50 \mathrm{k}\}
\end{aligned}
$$

Therefore, $\varnothing \mathrm{F}_{\mathrm{bm}} \mathrm{A}_{\mathrm{bm}}(\mathrm{W}$-section $)=\underline{60.55 \mathrm{k}}$

$$
ø \mathrm{R}_{\mathrm{n}}=\min \{50.18 \mathrm{k}, 36.50 \mathrm{k}, 60.55 \mathrm{k}\} \quad \text { Therefore, } \varnothing \mathrm{R}_{\mathrm{n}}=\underline{36.50 \mathrm{k}}
$$

click "back" button from web tool bar to return to slides

CONTROLLING ØP ${ }_{N}$

Once we have all of our values calculated, we need to compare them all to find out which value is the controlling value for our connection.

The final values are:

$$
\begin{gathered}
ø \mathrm{P}_{\mathrm{n}}=\min \{22.84 \mathrm{k}, 15.91 \mathrm{k}, 29.85 \mathrm{k}, 36.50 \mathrm{k}\} \\
\underline{ø \mathrm{P}_{\underline{n}}=15.91 \mathrm{k}}
\end{gathered}
$$

Therefore, our controlling value for this connection comes from the block shear rupture on the angle bracket.

